Skip to main content
Engineering LibreTexts

2.1: INTRODUCTION

  • Page ID
    58437
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A control system is a system that regulates an output variable with the objective of producing a given relationship between it and an input variable or of maintaining the output at a fixed value. In a feedback control system, at least part of the information used to change the output variable is derived from measurements performed on the output variable itself. This type of closed-loop control is often used in preference to open-loop control (where the system does not use output-variable information to influence its output) since feedback can reduce the sensitivity of the system to ex­ternally applied disturbances and to changes in system parameters. Familiar examples of feedback control systems include residential heating systems, most high-fidelity audio amplifiers, and the iris-retina combina­tion that regulates light entering the eye.

    There are a variety of textbooks(G. S. Brown and D. P. Cambell, Principles of Servomechanisms, Wiley, New York, 1948; J. G. Truxal, Automatic Feedback Control System Synthesis, McGraw-Hill, New York, 1955; H. Chestnut and R. W. Mayer, Servomechanisms and Regulating System Design, Vol. 1, 2ndEd., Wiley, NewYork, 1959; R.N.Clark, Introduction to Automatic Control Systems, Wiley, New York, 1962; J. J. D'Azzo and C. H. Houpis, Feedback Control System Analysis and Synthesis, 2nd Ed., McGraw-Hill, New York, 1966; B. C. Kuo, Automatic Control Systems, 2nd Ed., Prentice-Hall, Englewood Cliffs, New Jersey, 1967; K. Ogata, Modern Control Engineering, Prentice-Hall, Englewood Cliffs, New Jersey, 1970.) available that provide detailed treat­ment on servomechanisms, or feedback control systems where at least one of the variables is a mechanical quantity. The emphasis in this presentation is on feedback amplifiers in general, with particular attention given to feedback connections which include operational amplifiers.

    The operational amplifier is a component that is used almost exclusively in feedback connections; therefore a detailed knowledge of the behavior of feedback systems is necessary to obtain maximum performance from these amplifiers. For example, the open-loop transfer function of many opera­tional amplifiers can be easily and predictably modified by means of external components. The choice of the open-loop transfer function used for a particular application must be based on feedback principles.

    截屏2021-08-04 下午10.39.06.png
    Figure 2.1 A typical feedback system.

    This page titled 2.1: INTRODUCTION is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James K. Roberge (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.