Skip to main content
Engineering LibreTexts

8.3: Common Fourier Transforms

  • Page ID
    22888
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Common CTFT Properties

    Table \(\PageIndex{1}\)
    Time Domain Signal Frequency Domain Signal Condition
    \(e^{-(a t)} u(t)\) \(\frac{1}{a+j \omega}\) \(a>0\)
    \(e^{at}u(−t)\) \(\frac{1}{a-j \omega}\) \(a>0\)
    \(e^{−(a|t|)}\) \(\frac{2a}{a^2+\omega^2}\) \(a>0\)
    \(te^{−(at)}u(t)\) \(\frac{1}{(a+j \omega)^2}\) \(a>0\)
    \(t^ne^{−(at)}u(t)\) \(\frac{n !}{(a+j \omega)^{n+1}}\) \(a>0\)
    \(\delta(t)\) \(1\)
    \(1\) \(2 \pi \delta(\omega)\)
    \(e^{j \omega_0 t}\) \(2 \pi \delta\left(\omega-\omega_{0}\right)\)
    \( \cos (\omega_0 t) \) \(\pi\left(\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right)\)
    \(\sin (\omega_0 t)\) \(j \pi\left(\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right)\)
    \(u(t)\) \(\pi \delta(\omega)+\frac{1}{j \omega}\)
    sgn (\(t)\) \(\frac{2}{j \omega}\)
    \(\cos \left(\omega_{0} t\right) u(t)\) \(\frac{\pi}{2}\left(\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right)+\frac{j \omega}{\omega_{0}^{2}-\omega^{2}}\)
    \(\sin \left(\omega_{0} t\right) u(t)\) \(\frac{\pi}{2 j}\left(\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right)+\frac{\omega_{0}}{\omega_{0}^{2}-\omega^{2}}\)
    \(e^{-(a t)} \sin \left(\omega_{0} t\right) u(t)\) \(\frac{\omega_{0}}{(a+j \omega)^{2}+\omega_{0}^{2}}\) \(a>0\)
    \(e^{-(a t)} \cos \left(\omega_{0} t\right) u(t)\) \(\frac{a+j \omega}{(a+j \omega)^{2}+\omega_{0}^{2}}\) \(a>0\)
    \(u(t+\tau)-u(t-\tau)\) \(2 \tau \frac{\sin (\omega \tau)}{\omega \tau}=2 \tau \operatorname{sinc}(\omega t)\)
    \(\frac{\omega_{0}}{\pi} \frac{\sin \left(\omega_{0} t\right)}{\omega_{0} t}=\frac{\omega_{0}}{\pi} \operatorname{sinc}\left(\omega_{0}\right)\) \(u\left(\omega+\omega_{0}\right)-u\left(\omega-\omega_{0}\right)\)
    \(\begin{array}{l}
    \left(\frac{t}{\tau}+1\right)\left(u\left(\frac{t}{\tau}+1\right)-u\left(\frac{t}{\tau}\right)\right) \\
    \left(-\frac{t}{\tau}+1\right)\left(u\left(\frac{t}{\tau}\right)-u\left(\frac{t}{\tau}-1\right)\right)= \\
    \operatorname{triag}\left(\frac{t}{2 \tau}\right)
    \end{array}\)
    \(\tau \operatorname{sinc}^{2}\left(\frac{\omega \tau}{2}\right)\)
    \(\frac{\omega_{0}}{2 \pi} \operatorname{sinc}^{2}\left(\frac{\omega_{0} t}{2}\right)\) \(\begin{array}{l}
    \left(\frac{\omega}{\omega_{0}}+1\right)\left(u\left(\frac{\omega}{\omega_{0}}+1\right)-u\left(\frac{\omega}{\omega_{0}}\right)\right) + \\
    \left(-\frac{\omega}{\omega_{0}}+1\right)\left(u\left(\frac{\omega}{\omega_{0}}\right)-u\left(\frac{\omega}{\omega_{0}}-1\right)\right)= \\
    \operatorname{triag}\left(\frac{\omega}{2 \omega_{0}}\right)
    \end{array}\)
    \(\sum_{n=-\infty}^{\infty} \delta(t-n T)\) \(\omega_{0} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{0}\right)\) \(\omega_0 = \frac{2 \pi}{T}\)
    \(e^{-\frac{t^{2}}{2 \sigma^{2}}}\) \(\sigma \sqrt{2 \pi} e^{-\frac{\sigma^{2} \omega^{2}}{2}}\)

    triag[n] is the triangle function for arbitrary real-valued \(n\).

    \[ \operatorname{triag}[\mathrm{n}]=\left\{\begin{array}{ll}
    1+n & \text { if }-1 \leq n \leq 0 \\
    1-n & \text { if } 0<n \leq 1 \\
    0 & \text { otherwise }
    \end{array}\right. \nonumber \]


    This page titled 8.3: Common Fourier Transforms is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?