8.3: Common Fourier Transforms
- Page ID
- 22888
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Common CTFT Properties
Time Domain Signal | Frequency Domain Signal | Condition |
---|---|---|
\(e^{-(a t)} u(t)\) | \(\frac{1}{a+j \omega}\) | \(a>0\) |
\(e^{at}u(−t)\) | \(\frac{1}{a-j \omega}\) | \(a>0\) |
\(e^{−(a|t|)}\) | \(\frac{2a}{a^2+\omega^2}\) | \(a>0\) |
\(te^{−(at)}u(t)\) | \(\frac{1}{(a+j \omega)^2}\) | \(a>0\) |
\(t^ne^{−(at)}u(t)\) | \(\frac{n !}{(a+j \omega)^{n+1}}\) | \(a>0\) |
\(\delta(t)\) | \(1\) | |
\(1\) | \(2 \pi \delta(\omega)\) | |
\(e^{j \omega_0 t}\) | \(2 \pi \delta\left(\omega-\omega_{0}\right)\) | |
\( \cos (\omega_0 t) \) | \(\pi\left(\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right)\) | |
\(\sin (\omega_0 t)\) | \(j \pi\left(\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right)\) | |
\(u(t)\) | \(\pi \delta(\omega)+\frac{1}{j \omega}\) | |
sgn (\(t)\) | \(\frac{2}{j \omega}\) | |
\(\cos \left(\omega_{0} t\right) u(t)\) | \(\frac{\pi}{2}\left(\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right)+\frac{j \omega}{\omega_{0}^{2}-\omega^{2}}\) | |
\(\sin \left(\omega_{0} t\right) u(t)\) | \(\frac{\pi}{2 j}\left(\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right)+\frac{\omega_{0}}{\omega_{0}^{2}-\omega^{2}}\) | |
\(e^{-(a t)} \sin \left(\omega_{0} t\right) u(t)\) | \(\frac{\omega_{0}}{(a+j \omega)^{2}+\omega_{0}^{2}}\) | \(a>0\) |
\(e^{-(a t)} \cos \left(\omega_{0} t\right) u(t)\) | \(\frac{a+j \omega}{(a+j \omega)^{2}+\omega_{0}^{2}}\) | \(a>0\) |
\(u(t+\tau)-u(t-\tau)\) | \(2 \tau \frac{\sin (\omega \tau)}{\omega \tau}=2 \tau \operatorname{sinc}(\omega t)\) | |
\(\frac{\omega_{0}}{\pi} \frac{\sin \left(\omega_{0} t\right)}{\omega_{0} t}=\frac{\omega_{0}}{\pi} \operatorname{sinc}\left(\omega_{0}\right)\) | \(u\left(\omega+\omega_{0}\right)-u\left(\omega-\omega_{0}\right)\) | |
\(\begin{array}{l} \left(\frac{t}{\tau}+1\right)\left(u\left(\frac{t}{\tau}+1\right)-u\left(\frac{t}{\tau}\right)\right) \\ \left(-\frac{t}{\tau}+1\right)\left(u\left(\frac{t}{\tau}\right)-u\left(\frac{t}{\tau}-1\right)\right)= \\ \operatorname{triag}\left(\frac{t}{2 \tau}\right) \end{array}\) |
\(\tau \operatorname{sinc}^{2}\left(\frac{\omega \tau}{2}\right)\) | |
\(\frac{\omega_{0}}{2 \pi} \operatorname{sinc}^{2}\left(\frac{\omega_{0} t}{2}\right)\) | \(\begin{array}{l} \left(\frac{\omega}{\omega_{0}}+1\right)\left(u\left(\frac{\omega}{\omega_{0}}+1\right)-u\left(\frac{\omega}{\omega_{0}}\right)\right) + \\ \left(-\frac{\omega}{\omega_{0}}+1\right)\left(u\left(\frac{\omega}{\omega_{0}}\right)-u\left(\frac{\omega}{\omega_{0}}-1\right)\right)= \\ \operatorname{triag}\left(\frac{\omega}{2 \omega_{0}}\right) \end{array}\) |
|
\(\sum_{n=-\infty}^{\infty} \delta(t-n T)\) | \(\omega_{0} \sum_{n=-\infty}^{\infty} \delta\left(\omega-n \omega_{0}\right)\) | \(\omega_0 = \frac{2 \pi}{T}\) |
\(e^{-\frac{t^{2}}{2 \sigma^{2}}}\) | \(\sigma \sqrt{2 \pi} e^{-\frac{\sigma^{2} \omega^{2}}{2}}\) |
triag[n] is the triangle function for arbitrary real-valued \(n\).
\[ \operatorname{triag}[\mathrm{n}]=\left\{\begin{array}{ll}
1+n & \text { if }-1 \leq n \leq 0 \\
1-n & \text { if } 0<n \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \nonumber \]