Skip to main content
Engineering LibreTexts

15.4: Inner Products

  • Page ID
    22938
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Definition: Inner Product

    You may have run across inner products, also called dot products, on \(\mathbb{R}^n\) before in some of your math or science courses. If not, we define the inner product as follows, given we have some \(\boldsymbol{x} \in \mathbb{R}^{n}\) and \(\boldsymbol{y} \in \mathbb{R}^{n}\).

    Definition: Standard Inner Product

    The standard inner product is defined mathematically as:

    \[\begin{aligned}
    \langle\boldsymbol{x}, \boldsymbol{y}\rangle &=\boldsymbol{y}^{T} \boldsymbol{x} \\
    &=\left(\begin{array}{cccc}
    y_{0} & y_{1} & \dots & y_{n-1}
    \end{array}\right)\left(\begin{array}{c}
    x_{0} \\
    x_{1} \\
    \vdots \\
    x_{n-1}
    \end{array}\right) \\
    &=\sum_{i=0}^{n-1} x_{i} y_{i}
    \end{aligned} \nonumber \]

    Inner Product in 2-D

    If we have\(\boldsymbol{x} \in \mathbb{R}^2\) and \(\boldsymbol{y} \in \mathbb{R}^2\), then we can write the inner product as

    \[\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\|\boldsymbol{x}\|\|\boldsymbol{y}\| \cos (\theta) \nonumber \]

    where \(\theta\) is the angle between \(\boldsymbol{x}\) and \(\boldsymbol{y}\).

    inprod_f1.png
    Figure \(\PageIndex{1}\): General plot of vectors and angle referred to in above equations.

    Geometrically, the inner product tells us about the strength of \(\boldsymbol{x}\) in the direction of \(\boldsymbol{y}\).

    Example \(\PageIndex{1}\)

    For example, if \(\|x\|=1\), then

    \[<x, y>=\|y\| \cos (\theta) \nonumber \]

    inprod_f2.png
    Figure \(\PageIndex{2}\): Plot of two vectors from above example.

    The following characteristics are revealed by the inner product:

    • \(\langle \boldsymbol{x}, \boldsymbol{y}\rangle\) measures the length of the projection of \(\boldsymbol{y}\) onto \(\boldsymbol{x}\).
    • \(\langle \boldsymbol{x}, \boldsymbol{y}\rangle\) is maximum (for given \(\|\boldsymbol{x}\|\), \(\|\boldsymbol{y}\|\)) when \(\boldsymbol{x}\) and \(\boldsymbol{y}\) are in the same direction (\((\theta=0) \Rightarrow(\cos (\theta)=1)\)).
    • \(\langle \boldsymbol{x}, \boldsymbol{y}\rangle\) is zero when \((\cos (\theta)=0) \Rightarrow\left(\theta=90^{\circ}\right)\), i.e. \(\boldsymbol{x}\) and \(\boldsymbol{y}\) are orthogonal.

    Inner Product Rules

    In general, an inner product on a complex vector space is just a function (taking two vectors and returning a complex number) that satisfies certain rules:

    • Conjugate Symmetry: \[\langle \boldsymbol{x}, \boldsymbol{y}\rangle=\overline{\langle \boldsymbol{x}, \boldsymbol{y}\rangle} \nonumber \]
    • Scaling: \[\langle\alpha \boldsymbol{x}, \boldsymbol{y} \rangle=\alpha\langle(\boldsymbol{x}, \boldsymbol{y})\rangle \nonumber \]
    • Additivity: \[\langle \boldsymbol{x}+\boldsymbol{y}, \boldsymbol{z} \rangle=\langle \boldsymbol{x}, \boldsymbol{z}\rangle+\langle \boldsymbol{y}, \boldsymbol{z}\rangle \nonumber \]
    • "Positivity": \[\langle \boldsymbol{x}, \boldsymbol{x} \rangle >0, \boldsymbol{x} \neq 0 \nonumber \]

    Definition: Orthogonal

    We say that \(\boldsymbol{x}\) and \(\boldsymbol{y}\) are orthogonal if:

    \[\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0 \nonumber \]


    This page titled 15.4: Inner Products is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..