Skip to main content
Engineering LibreTexts

15.3: Norms

  • Page ID
    22937
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Introduction

    This module will explain norms, a mathematical concept that provides a notion of the size of a vector. Specifically, the general definition of a norm will be discussed and discrete time signal norms will be presented.

    Norms

    The norm of a vector is a real number that represents the "size" of the vector.

    Example \(\PageIndex{1}\)

    In \(\mathbb{R}^2\), we can define a norm to be a vectors geometric length.

    norm_f1.png

    Figure \(\PageIndex{1}\)

    \(\boldsymbol{x}=(x_0,x_1)^T\), norm \(\|\boldsymbol{x}\|=\sqrt{x_{0}^{2}+x_{1}^{2}}\)

    Mathematically, a norm \(\|\cdot\|\) is just a function (taking a vector and returning a real number) that satisfies three rules.

    To be a norm, \(\|\cdot\|\) must satisfy:

    1. the norm of every vector is positive \(\|x\|>0\), \(x \in S\)
    2. scaling a vector scales the norm by the same amount \(\|\alpha x\|=|\alpha|\|x\|\) for all vectors \(x\) and scalars \(\alpha\)
    3. Triangle Property: \(\|x+y\| \leq\|x\|+\|y\|\) for all vectors \(x\), \(y\). "The "size" of the sum of two vectors is less than or equal to the sum of their sizes"

    A vector space (Section 15.2) with a well defined norm is called a normed vector space or normed linear space.

    Examples

    Example \(\PageIndex{2}\)

    \(\mathbb{R}^n\) (or \(\mathbb{C}^n\)), \(\boldsymbol{x}=\left(\begin{array}{c}
    x_{0} \\
    x_{1} \\
    \dots \\
    x_{n-1}
    \end{array}\right)\), \(\|x\|_{1}=\sum_{i=0}^{n-1}\left|x_{i}\right|\), \(\mathbb{R}^n\) with this norm is called \(\ell^{1}([0, n-1])\).

    norm_f2.png
    Figure \(\PageIndex{2}\): Collection of all \(\boldsymbol{x} \in \mathbb{R}^2\) with \(\|x\|_{1}=1\)

    Example \(\PageIndex{3}\)

    \(\mathbb{R}^n\) (or \(\mathbb{C}^n\)), with norm \(\|x\|_{2}=\left(\sum_{i=0}^{n-1}\left(\left|x_{i}\right|\right)^{2}\right)^{\frac{1}{2}}\), \(\mathbb{R}^n\) is called \(\ell^{2}([0, n-1])\) (the usual "Euclidean"norm).

    norm_f3.png
    Figure \(\PageIndex{3}\): Collection of all \(\boldsymbol{x} \in \mathbb{R}^{2}\) with \(\|x\|_{2}=1\)

    Example \(\PageIndex{4}\)

    \(\mathbb{R}^n\) (or \(\mathbb{C}^n\)), with norm \(\|x\|_{\infty}=\max _{i}\left\{i,\left|x_{i}\right|\right\}\) is called \(\ell^{\infty}([0, n-1])\)

    norm_f4.png
    Figure \(\PageIndex{4}\): \(x \in \mathbb{R}^2\) with \(\|x\|_{\infty}=1\)

    Spaces of Sequences and Functions

    We can define similar norms for spaces of sequences and functions.

    Discrete time signals = sequences of numbers

    \[x[n]=\left\{\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right\} \nonumber \]

    • \(\|x(n)\|_{1}=\sum_{i=-\infty}^{\infty}|x[i]|, x[n] \in \ell^{1}(\mathbb{Z}) \Rightarrow\left(\|x\|_{1}<\infty\right)\)
    • \(\|x(n)\|_{2}=\left(\sum_{i=-\infty}^{\infty}(|x[i]|)^{2}\right)^{\frac{1}{2}}, x[n] \in \ell^{2}(\mathbb{Z}) \Rightarrow\left(\|x\|_{2}<\infty\right)\)
    • \(\|x(n)\|_{p}=\left(\sum_{i=-\infty}^{\infty}(|x[i]|)^{P}\right)^{\frac{1}{p}}, x[n] \in \ell^{p}(\mathbb{Z}) \Rightarrow\left(\|x\|_{p}<\infty\right)\)
    • \(\|x(n)\|_{\infty}=\sup _{i}|x[i]|, x[n] \in \ell^{\infty}(\mathbb{Z}) \Rightarrow\left(\|x\|_{\infty}<\infty\right)\)

    For continuous time functions:

    • \(\|f(t)\|_{p}=\left(\int_{-\infty}^{\infty}(|f(t)|)^{p} d t\right)^{\frac{1}{p}}, f(t) \in L^{p}(\mathbb{R}) \Rightarrow\left(\|f(t)\|_{p}<\infty\right)\)
    • \(\|f(t)\|_{p}=\left(\int_{0}^{T}(|f(t)|)^{p} d t\right)^{\frac{1}{p}}, f(t) \in L^{p}([0, T]) \Rightarrow\left(\|f(t)\|_{p}<\infty\right)\)

    This page titled 15.3: Norms is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?