Skip to main content
Engineering LibreTexts

15.13: Plancharel and Parseval's Theorems

  • Page ID
    23203
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Parseval's Theorem

    Continuous Time Fourier Series preserves signal energy

    i.e.:

    \[\int_{0}^{T}|f(t)|^{2} d t=T \sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} \quad \text { with unnormalized basis } e^{j \frac{2 \pi}{T} n t} \nonumber \]

    \[\int_{0}^{T}|f(t)|^{2} d t=\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} \quad \text { with unnormalized basis } \frac{e^{j \frac{2 \pi}{T} n t}}{\sqrt{T}} \nonumber \]

    \[\underbrace{\|f\|_{2}^{2}}_{L^{2}[0, T) e n e r g y}=\underbrace{\left\|C_{n}^{\prime}\right\|_{2}^{2}}_{l^{2}(Z) e n e r g y} \nonumber \]

    Prove: Plancherel theorem

    \[\begin{aligned}
    \text { Given } f(t) & \stackrel{\text { CTFS }}{\longrightarrow} c_{n} \\
    g(t) & \stackrel{\text { CTFS }}{\longrightarrow} d_{n}
    \end{aligned} \nonumber \]

    \[\text { Then } \int_{0}^{T} f(t) g^{*}(t) d t=T \sum_{n=-\infty}^{\infty} c_{n} d_{n}^{*} \text { with unnormalized basis } e^{j \frac{2 \pi}{T} n t} \nonumber \]

    \[\int_{0}^{T} f(t) g^{*}(t) d t=\sum_{n=-\infty}^{\infty} c_{n}^{\prime}\left(d_{n}^{\prime}\right)^{*} \text { with normalized basis } \frac{e^{j \frac{2 \pi}{T} n t}}{\sqrt{T}} \nonumber \]

    \[\langle f, g\rangle_{L_{2}(0, T]}=\langle c, d\rangle_{l_{2}(\mathbb{Z})} \nonumber \]

    Periodic Signals Power

    \[\text { Energy }=\|f\|^{2}=\int_{-\infty}^{\infty}|f(t)|^{2} d t=\infty \nonumber \]

    \[\begin{aligned}
    \text { Power } &=\lim _{T \rightarrow \infty} \frac{\text { Energy in }[0, T)}{T} \\
    &=\lim _{T \rightarrow \infty} \frac{T \sum_{n}\left|c_{n}\right|^{2}}{T} \\
    &=\sum_{n \in \mathbb{Z}}\left|c_{n}\right|^{2}(\text { unnormalized } \mathrm{FS})
    \end{aligned} \nonumber \]

    Example \(\PageIndex{1}\): Fourier Series of Square Pulse III - Compute the Energy

    Figure \(\PageIndex{1}\)

    \[f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j \frac{2 \pi}{T} n t} \stackrel{\mathbb{F}\mathbb{S}}{\rightarrow} c_{n}=\frac{1}{2} \frac{\sin \frac{\pi}{2} n}{\frac{\pi}{2} n} \nonumber \]

    \[\text { energy in time domain: }\|f\|_{2}^{2}=\int_{0}^{T}|f(t)|^{2} d t=\frac{T}{2} \nonumber \]

    Apply Parseval's Theorem:

    \[\quad T \sum_{n}\left|c_{n}\right|^{2} \nonumber \]
    \[ \begin{array}{l}
    =\frac{T}{4} \sum_{n}\left(\frac{\sin \frac{\pi}{2} n}{\frac{\pi}{2} n}\right)^{2} \\
    =\frac{T}{4} \frac{4}{\pi^{2}} \sum_{n} \frac{\left(\sin \frac{\pi}{2} n\right)^{2}}{n^{2}} \\
    =\frac{T}{\pi^{2}} \left[ \frac{\pi^{2}}{4}+\underbrace{\sum_{n} \operatorname{odd} \frac{1}{n^{2}}}_{\frac{\pi^{2}}{4}} \right] \\
    =\frac{T}{2} \square
    \end{array} \nonumber \]

    Plancharel Theorem

    Theorem \(\PageIndex{1}\): Plancharel Theorem

    The inner product of two vectors/signals is the same as the \(\ell^2\) inner product of their expansion coefficients.

    Let \(\left\{b_{i}\right\}\) be an orthonormal basis for a Hilbert Space \(H\). \(x \in H\), \(y \in H\)

    \[\begin{array}{l}
    x=\sum_{i} \alpha_{i} b_{i} \\
    y=\sum_{i} \beta_{i} b_{i}
    \end{array} \nonumber \]

    then

    \[\langle x, y\rangle_{H}=\sum_{i} \alpha_{i} \overline{\beta_{i}} \nonumber \]

    Example \(\PageIndex{2}\)

    Applying the Fourier Series, we can go from \(f(t)\) to \(\left\{c_{n}\right\}\) and \(g(t)\) to \(\left\{d_{n}\right\}\)

    \[\int_{0}^{T} f(t) \overline{g(t)} \mathrm{d} t=\sum_{n=-\infty}^{\infty} c_{n} \overline{d_{n}} \nonumber \]

    inner product in time-domain = inner product of Fourier coefficients.

    Proof:

    \[\begin{array}{l}
    x=\sum_{i} \alpha_{i} b_{i} \\
    y=\sum_{j} \beta_{j} b_{j}
    \end{array} \nonumber \]

    \[\langle x, y\rangle_{H}=\left\langle\sum_{i} \alpha_{i} b_{i}, \sum_{j} \beta_{j} b_{j}\right\rangle=\sum_{i} \alpha_{i}\left\langle\left(b_{i}, \sum_{j} \beta_{j} b_{j}\right)\right\rangle=\sum_{i} \alpha_{i} \sum_{j} \bar{\beta}_{j}\left\langle\left(b_{i}, b_{j}\right)\right\rangle=\sum_{i} \alpha_{i} \bar{\beta}_{i} \nonumber \]

    by using inner product rules (Section 15.4)

    Note

    \(\left\langle b_{i}, b_{j}\right\rangle=0\) when \(i \neq j\) and \(\left\langle b_{i}, b_{j}\right\rangle=1\) when \(i=j\)

    If Hilbert space H has a ONB, then inner products are equivalent to inner products in \(\ell^2\).

    All H with ONB are somehow equivalent to \(\ell^2\).

    Point of Interest

    Square-summable sequences are important

    Plancharels Theorem Demonstration

    PlancharelsTheoremDemo
    Figure \(\PageIndex{2}\): Interact (when online) with a Mathematica CDF demonstrating Plancharels Theorem visually. To Download, right-click and save target as .cdf.

    Parseval's Theorem: a different approach

    Theorem \(\PageIndex{2}\): Parseval's Theorem

    Energy of a signal = sum of squares of its expansion coefficients

    Let \(x \in H\), \(\left\{b_{i}\right\}\) ONB

    \[x=\sum_{i} \alpha_{i} b_{i} \nonumber \]

    Then

    \[\left(\|x\|_{H}\right)^{2}=\sum_{i}\left(\left|\alpha_{i}\right|\right)^{2} \nonumber \]

    Proof:

    Directly from Plancharel

    \[\left(\|x\|_{H}\right)^{2}=\langle x, x\rangle_{H}=\sum_{i} \alpha_{i} \overline{\alpha_{i}}=\sum_{i}\left(\left|\alpha_{i}\right|\right)^{2} \nonumber \]

    Example \(\PageIndex{3}\)

    Fourier Series \(\frac{1}{\sqrt{T}} e^{j w_{0} n t}\)

    \[\begin{array}{c}
    f(t)=\frac{1}{\sqrt{T}} \sum_{n} c_{n} \frac{1}{\sqrt{T}} e^{j w_{0} n t} \\
    \int_{0}^{T}(|f(t)|)^{2} d t=\sum_{n=-\infty}^{\infty}\left(\left|c_{n}\right|\right)^{2}
    \end{array} \nonumber \]


    This page titled 15.13: Plancharel and Parseval's Theorems is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?