15.12: Orthonormal Bases in Real and Complex Spaces
- Page ID
- 23202
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Notation
Transpose operator \(A^T\) flips the matrix across it's diagonal.
\[\begin{array}{l}
A=\left(\begin{array}{ll}
a_{1,1} & a_{1,2} \\
a_{2,1} & a_{2,2}
\end{array}\right) \\
A^{T}=\left(\begin{array}{ll}
a_{1,1} & a_{2,1} \\
a_{1,2} & a_{2,2}
\end{array}\right)
\end{array} \nonumber \]
Column \(i\) of \(A\) is row \(i\) of \(A^T\)
Recall, inner product
\[\boldsymbol{x}=\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right) \nonumber \]
\[\boldsymbol{y}=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right) \nonumber \]
\[\boldsymbol{x}^{T} \boldsymbol{y}=\left(\begin{array}{cccc}
x_{0} & x_{1} & \ldots & x_{n-1}
\end{array}\right)\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right)=\sum_{i} \boldsymbol{x}_{i} \boldsymbol{y}_{i}=\langle\boldsymbol{y}, \boldsymbol{x}\rangle \nonumber \]
on \(\mathbb{R}^n\).
Hermitian transpose \(A^H\), transpose and conjugate
\[\begin{array}{c}
A^{\mathrm{H}}=\overline{A^{T}} \\
\langle \boldsymbol{y}, \boldsymbol{x}\rangle=\boldsymbol{x}^{\mathrm{H}} \boldsymbol{y}=\sum_{i} \boldsymbol{x}_{i} \bar{\boldsymbol{y}}_{i}
\end{array} \nonumber \]
on \(\mathbb{C}^n\).
Now, let \(\left\{b_{0}, b_{1}, \dots, b_{n-1}\right\}\) be an orthonormal basis for \(\mathbb{C}^n\)
\[\begin{array}{c}
i=\{0,1, \ldots, n-1\}\left\langle b_{i}, b_{i}\right\rangle=1 \\
\left(i \neq j,\left\langle b_{i}, b_{i}\right\rangle=b_{j}^{H} b_{i}=0\right)
\end{array} \nonumber \]
Basis matrix:
\[B=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
b_{0} & b_{1} & \dots & b_{n-1} \\
\vdots & \vdots & & \vdots
\end{array}\right) \nonumber \]
Now,
\[B^{\mathrm{H}} B=\left(\begin{array}{ccc}
\cdots & b_{0}^{\mathrm{H}} & \cdots \\
\cdots & b_{1}^{\mathrm{H}} & \cdots \\
& \vdots \\
\cdots & b_{n-1}^{\mathrm{H}} & \ldots
\end{array}\right)\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
b_{0} & b_{1} & \cdots & b_{n-1} \\
\vdots & \vdots & & \vdots
\end{array}\right)=\left(\begin{array}{cccc}
b_{0}^{\mathrm{H}} b_{0} & b_{0}^{\mathrm{H}} b_{1} & \ldots & b_{0}^{\mathrm{H}} b_{n-1} \\
b_{1}^{\mathrm{H}} b_{0} & b_{1}^{\mathrm{H}} b_{1} & \ldots & b_{1}^{\mathrm{H}} b_{n-1} \\
\vdots & & \\
b_{n-1}^{\mathrm{H}} b_{0} & b_{n-1}^{\mathrm{H}} b_{1} & \ldots & b_{n-1}^{\mathrm{H}} b_{n-1}
\end{array}\right) \nonumber \]
For orthonormal basis with basis matrix \(B\)
\[B^H=B^{-1} \nonumber \]
(\(B^{T}=B^{-1} \text {in } \mathbb{R}^{n}\) in \(\mathbb{R}^n\)) \(B^H\) is easy to calculate while \(B^{-1}\) is hard to calculate.
So, to find \(\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right\}\) such that
\[\boldsymbol{x}=\sum_{i} \alpha_{i} b_{i} \nonumber \]
Calculate
\[\left(\boldsymbol{\alpha}=B^{-1} \boldsymbol{x}\right) \Rightarrow\left(\boldsymbol{\alpha}=B^{H} \boldsymbol{x}\right) \nonumber \]
Using an orthonormal basis we rid ourselves of the inverse operation.