Skip to main content
Engineering LibreTexts

15.11: Haar Wavelet Basis

  • Page ID
    23201
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Introduction

    Fourier series is a useful orthonormal representation (Section 15.9) on \(L^2([0,T])\) especially for inputs into LTI systems. However, it is ill suited for some applications, i.e. image processing (recall Gibb's phenomena (Section 6.7)).

    Wavelets, discovered in the last 15 years, are another kind of basis for \(L^2([0,T])\) and have many nice properties.

    Basis Comparisons

    Fourier series - \(c_n\) give frequency information. Basis functions last the entire interval.

    fig1.png
    Figure \(\PageIndex{1}\): Fourier basis functions

    Wavelets - basis functions give frequency info but are local in time.

    fig2.png
    Figure \(\PageIndex{2}\): Wavelet basis functions

    In Fourier basis, the basis functions are harmonic multiples of \(e^{j \omega_0 t}\)

    fig3.png
    Figure \(\PageIndex{3}\): \(\text { basis }=\left\{\frac{1}{\sqrt{T}} e^{j \omega_{0} n t}\right\}\)

    In Haar wavelet basis, the basis functions are scaled and translated versions of a "mother wavelet" \(\psi(t)\).

    fig4.png

    Figure \(\PageIndex{4}\)

    Basis functions \(\left\{\psi_{j, k}(t)\right\}\) are indexed by a scale j and a shift k.

    Let \(\phi(t)=1\), \(0 \leq t<T\) Then \(\left\{\phi(t), 2^{\frac{j}{2}} \psi\left(2^{j} t-k\right), \phi(t), 2^{\frac{j}{2}} \psi\left(2^{j} t-k\right) \mid j \in \mathbb{Z} \text { and }\left(k=0,1,2, \ldots, 2^{j}-1\right)\right\}\).

    fig5.png

    Figure \(\PageIndex{5}\)

    \[\psi(t)=\left\{\begin{array}{l}
    1 \text { if } 0 \leq t<\frac{T}{2} \\
    -1 \text { if } 0 \leq \frac{T}{2}<T
    \end{array}\right. \nonumber \]

    fig6.png

    Figure \(\PageIndex{6}\)

    Let \(\psi_{j, k}(t)=2^{\frac{j}{2}} \psi\left(2^{j} t-k\right)\).

    fig7.png

    Figure \(\PageIndex{7}\)

    Larger \(j\) → "skinnier" basis function, \(j=\{0,1,2, \ldots\}\), \(2^j\) shifts at each scale: \(k=0,1, \ldots, 2^{j}-1\)

    Check: each \(\psi_{j, k}(t)\) has unit energy

    fig8.png

    Figure \(\PageIndex{8}\)

    \[\left(\int \psi_{j, k}^{2}(t) \mathrm{d} t=1\right) \Rightarrow\left(\left\|\psi_{j, k}(t)\right\|_{2}=1\right) \nonumber \]

    Any two basis functions are orthogonal.

    fig9a.png
    (a) Same scale
    fig9b.png

    (b) Different Scale

    Figure \(\PageIndex{9}\): Integral of product = 0

    Also, \(\left\{\psi_{j, k}, \phi\right\}\) span \(L^2([0,T])\).

    Haar Wavelet Transform

    Using what we know about Hilbert spaces (Section 15.4): For any \(f(t) \in L^{2}([0, T])\), we can write

    Synthesis

    \[f(t)=\sum_{j} \sum_{k} w_{j, k} \psi_{j, k}(t)+c_{0} \phi(t) \nonumber \]

    Analysis

    \[w_{j, k}=\int_{0}^{T} f(t) \psi_{j, k}(t) d t \nonumber \]

    \[c_{0}=\int_{0}^{T} f(t) \phi(t) d t \nonumber \]

    Note

    the \(w_{j,k}\) are real

    The Haar transform is super useful especially in image compression

    Haar Wavelet Demonstration

    HaarDemo
    Figure \(\PageIndex{10}\): Interact (when online) with a Mathematica CDF demonstrating the Haar Wavelet as an Orthonormal Basis.

    This page titled 15.11: Haar Wavelet Basis is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?