Skip to main content
Engineering LibreTexts

9.5: Maximum Entropy, Analytic Form

  • Page ID
    50214
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The Principle of Maximum Entropy is based on the premise that when estimating the probability distribution, you should select that distribution which leaves you the largest remaining uncertainty (i.e., the maximum entropy) consistent with your constraints. That way you have not introduced any additional assumptions or biases into your calculations.

    This principle was used in Chapter 8 for the simple case of three probabilities and one constraint. The entropy could be maximized analytically. Using the constraint and the fact that the probabilities add up to 1, we expressed two of the unknown probabilities in terms of the third.

    Next, the possible range of values of the probabilities was determined using the fact that each of the three lies between 0 and 1. Then, these expressions were substituted into the formula for entropy \(S\) so that it was expressed in terms of a single probability. Then any of several techniques could be used to find the value of that probability for which \(S\) is the largest.

    This analytical technique does not extend to cases with more than three possible states and only one constraint. It is only practical because the constraint can be used to express the entropy in terms of a single variable. If there are, say, four unknowns and two equations, the entropy would be left as a function of two variables, rather than one. It would be necessary to search for its maximum in a plane. Perhaps this seems feasible, but what if there were five unknowns? (Or ten?) Searching in a space of three (or eight) dimensions would be necessary, and this is much more difficult.

    A different approach is developed in the next section, one well suited for a single constraint and many probabilities.


    This page titled 9.5: Maximum Entropy, Analytic Form is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paul Penfield, Jr. (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.