8.6: Derivation of the Initial-Value Theorem
- Page ID
- 7675
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Consider a physical function \(f(t)\), with derivative \(d f / d t\), and with Laplace transform \(L[f(t)]=F(s)\). The initial-value theorem is:
\[\lim _{t \rightarrow 0^{+} \text {from } t>0} f(t) \equiv f\left(0^{+}\right)=\lim _{s \rightarrow \infty}[s F(s)]\label{eqn:8.20} \]
In general, Equation \(\ref{eqn:8.20}\) gives the initial value \(f\left(0^{+}\right)\) of a time function \(f(t)\) based only on the Laplace transform \(L[f(t)]=F(s)\), without requiring that the equation for \(f(t)\) be available. If \(f(t)\) is dynamic response to excitation that involves the ideal unit-impulse function \(\delta(t-0)\), then \(f\left(0^{+}\right)\) is the post-impulse initial value, as defined in Section 8.5; otherwise, \(f\left(0^{+}\right) \equiv f(0) \equiv f\left(0^{-}\right)\), which is the standard initial value known to exist before excitation occurs.
Our derivation of the initial-value theorem (from a more detailed proof in Cannon, 1967, p. 569) is based upon the form of Laplace transform that can accommodate the ideal impulse function \(\delta(t-0)\):
\[L[f(t)]=\int_{t=0^{-}}^{t=\infty} e^{-s t} f(t) d t\label{eqn:8.12} \]
First, we need the following Laplace transform of a derivative, the transform that is associated with definition Equation \(\ref{eqn:8.12}\):
\[L\left[\frac{d}{d t} f(t)\right]=\int_{t=0^{-}}^{t=\infty} e^{-s t} \frac{d f}{d t} d t=s F(s)-f\left(0^{-}\right)\label{eqn:8.21} \]
The derivation of Equation \(\ref{eqn:8.21}\) using integration by parts is almost identical to the derivation shown in Equation 2.2.8, the only difference being the lower limit of the integral at \(t = 0^-\) instead of \(t = 0\). We do not need the corresponding formula for higher-order derivatives right now, but it is appropriate here to state that the initial conditions at \(t = 0\) in general formula Equation 2.2.10 may similarly be replaced by values at \(t=0^-1\):
\[L\left[\frac{d^{n}}{d t^{n}} f(t)\right]=s^{n} F(s)-s^{n-1} f\left(0^{-}\right)-s^{n-2} \dot{f}\left(0^{-}\right)-\cdots-\overset{(n-1)}{f}\left(0^{-}\right)\label{eqn:8.22} \]
Next, taking the limit of all terms in Equation \(\ref{eqn:8.21}\) as \(s \rightarrow \infty\) gives
\[\lim _{s \rightarrow \infty} L\left[\frac{d f}{d t}\right]=\lim _{s \rightarrow \infty}\left(\int_{t=0^{-}}^{t=0^{+}} 1 \times \frac{d f}{d t} d t+\int_{t=0^{+}}^{t=\infty} e^{-s t} \frac{d f}{d t} d t\right)=\lim _{s \rightarrow \infty}[s F(s)]-f\left(0^{-}\right)\label{eqn:8.23} \]
In Equation \(\ref{eqn:8.23}\), we separate the definite integral into two parts:
- a part over the interval from \(t=0^{-}\) to \(t=0^{+}\), during which we set \(e^{-s t}=1\) (and during which an ideal impulse including \(\delta(t-0)\) could be acting); and
- a part over the interval from \(t=0^{+}\) to \(t=\infty\). The integrand of the second part includes \(e^{-s t}\), and since \(s \rightarrow \infty\), we set this integral to zero: \(\lim _{s \rightarrow \infty} \int_{t=0^{+}}^{t=\infty} e^{-s t}(d f / d t) d t=0\). Furthermore, the first integral, which is now independent of \(s\), is evaluated indentically as \(\int_{t=0^{-}}^{t=0^{+}}(d f / d t) d t=f\left(0^{+}\right)-f\left(0^{-}\right)\). Therefore, Equation \(\ref{eqn:8.23}\) becomes
\[\lim _{s \rightarrow \infty} L\left[\frac{d f}{d t}\right]=f\left(0^{+}\right)-f\left(0^{-}\right)=\lim _{s \rightarrow \infty}[s F(s)]-f\left(0^{-}\right)\label{eqn:8.24} \]
\[\Rightarrow \quad f\left(0^{+}\right)=\lim _{s \rightarrow \infty}[s F(s)] \nonumber \]
This is the version of initial-value theorem that was applied in Section 8.5 to re-derive result Equation 8.5.8.
If \(f(t)\) is dynamic response to excitation that does not involves an ideal unit-impulse function \(\delta(t-0)\), then there is no discontinuous jump at \(t=0\), i.e. \(f\left(0^{+}\right)-f\left(0^{-}\right)=0\). For this case, therefore, Equation \(\ref{eqn:8.24}\) gives the more common (but less general) version of initial-value theorem:
\[f\left(0^{-}\right)=\lim _{s \rightarrow \infty}[s F(s)] \nonumber \]