15.13: Plancharel and Parseval's Theorems
( \newcommand{\kernel}{\mathrm{null}\,}\)
Parseval's Theorem
Continuous Time Fourier Series preserves signal energy
i.e.:
∫T0|f(t)|2dt=T∞∑n=−∞|Cn|2 with unnormalized basis ej2πTnt
∫T0|f(t)|2dt=∞∑n=−∞|Cn|2 with unnormalized basis ej2πTnt√T
‖
Prove: Plancherel theorem
\begin{aligned} \text { Given } f(t) & \stackrel{\text { CTFS }}{\longrightarrow} c_{n} \\ g(t) & \stackrel{\text { CTFS }}{\longrightarrow} d_{n} \end{aligned} \nonumber
\text { Then } \int_{0}^{T} f(t) g^{*}(t) d t=T \sum_{n=-\infty}^{\infty} c_{n} d_{n}^{*} \text { with unnormalized basis } e^{j \frac{2 \pi}{T} n t} \nonumber
\int_{0}^{T} f(t) g^{*}(t) d t=\sum_{n=-\infty}^{\infty} c_{n}^{\prime}\left(d_{n}^{\prime}\right)^{*} \text { with normalized basis } \frac{e^{j \frac{2 \pi}{T} n t}}{\sqrt{T}} \nonumber
\langle f, g\rangle_{L_{2}(0, T]}=\langle c, d\rangle_{l_{2}(\mathbb{Z})} \nonumber
Periodic Signals Power
\text { Energy }=\|f\|^{2}=\int_{-\infty}^{\infty}|f(t)|^{2} d t=\infty \nonumber
\begin{aligned} \text { Power } &=\lim _{T \rightarrow \infty} \frac{\text { Energy in }[0, T)}{T} \\ &=\lim _{T \rightarrow \infty} \frac{T \sum_{n}\left|c_{n}\right|^{2}}{T} \\ &=\sum_{n \in \mathbb{Z}}\left|c_{n}\right|^{2}(\text { unnormalized } \mathrm{FS}) \end{aligned} \nonumber
Example \PageIndex{1}: Fourier Series of Square Pulse III - Compute the Energy

Figure \PageIndex{1}
f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j \frac{2 \pi}{T} n t} \stackrel{\mathbb{F}\mathbb{S}}{\rightarrow} c_{n}=\frac{1}{2} \frac{\sin \frac{\pi}{2} n}{\frac{\pi}{2} n} \nonumber
\text { energy in time domain: }\|f\|_{2}^{2}=\int_{0}^{T}|f(t)|^{2} d t=\frac{T}{2} \nonumber
Apply Parseval's Theorem:
\quad T \sum_{n}\left|c_{n}\right|^{2} \nonumber
\begin{array}{l}
=\frac{T}{4} \sum_{n}\left(\frac{\sin \frac{\pi}{2} n}{\frac{\pi}{2} n}\right)^{2} \\
=\frac{T}{4} \frac{4}{\pi^{2}} \sum_{n} \frac{\left(\sin \frac{\pi}{2} n\right)^{2}}{n^{2}} \\
=\frac{T}{\pi^{2}} \left[ \frac{\pi^{2}}{4}+\underbrace{\sum_{n} \operatorname{odd} \frac{1}{n^{2}}}_{\frac{\pi^{2}}{4}} \right] \\
=\frac{T}{2} \square
\end{array} \nonumber
Plancharel Theorem
Theorem \PageIndex{1}: Plancharel Theorem
The inner product of two vectors/signals is the same as the \ell^2 inner product of their expansion coefficients.
Let \left\{b_{i}\right\} be an orthonormal basis for a Hilbert Space H. x \in H, y \in H
\begin{array}{l} x=\sum_{i} \alpha_{i} b_{i} \\ y=\sum_{i} \beta_{i} b_{i} \end{array} \nonumber
then\langle x, y\rangle_{H}=\sum_{i} \alpha_{i} \overline{\beta_{i}} \nonumber
Example \PageIndex{2}
Applying the Fourier Series, we can go from f(t) to \left\{c_{n}\right\} and g(t) to \left\{d_{n}\right\}
\int_{0}^{T} f(t) \overline{g(t)} \mathrm{d} t=\sum_{n=-\infty}^{\infty} c_{n} \overline{d_{n}} \nonumber
inner product in time-domain = inner product of Fourier coefficients.Proof:
\begin{array}{l} x=\sum_{i} \alpha_{i} b_{i} \\ y=\sum_{j} \beta_{j} b_{j} \end{array} \nonumber
\langle x, y\rangle_{H}=\left\langle\sum_{i} \alpha_{i} b_{i}, \sum_{j} \beta_{j} b_{j}\right\rangle=\sum_{i} \alpha_{i}\left\langle\left(b_{i}, \sum_{j} \beta_{j} b_{j}\right)\right\rangle=\sum_{i} \alpha_{i} \sum_{j} \bar{\beta}_{j}\left\langle\left(b_{i}, b_{j}\right)\right\rangle=\sum_{i} \alpha_{i} \bar{\beta}_{i} \nonumber
by using inner product rules (Section 15.4)
Note
\left\langle b_{i}, b_{j}\right\rangle=0 when i \neq j and \left\langle b_{i}, b_{j}\right\rangle=1 when i=j
If Hilbert space H has a ONB, then inner products are equivalent to inner products in \ell^2.
All H with ONB are somehow equivalent to \ell^2.
Point of Interest
Square-summable sequences are important
Plancharels Theorem Demonstration

Parseval's Theorem: a different approach
Theorem \PageIndex{2}: Parseval's Theorem
Energy of a signal = sum of squares of its expansion coefficients
Let x \in H, \left\{b_{i}\right\} ONB
x=\sum_{i} \alpha_{i} b_{i} \nonumber
Then\left(\|x\|_{H}\right)^{2}=\sum_{i}\left(\left|\alpha_{i}\right|\right)^{2} \nonumber
Proof:
Directly from Plancharel
\left(\|x\|_{H}\right)^{2}=\langle x, x\rangle_{H}=\sum_{i} \alpha_{i} \overline{\alpha_{i}}=\sum_{i}\left(\left|\alpha_{i}\right|\right)^{2} \nonumber
Example \PageIndex{3}
Fourier Series \frac{1}{\sqrt{T}} e^{j w_{0} n t}
\begin{array}{c} f(t)=\frac{1}{\sqrt{T}} \sum_{n} c_{n} \frac{1}{\sqrt{T}} e^{j w_{0} n t} \\ \int_{0}^{T}(|f(t)|)^{2} d t=\sum_{n=-\infty}^{\infty}\left(\left|c_{n}\right|\right)^{2} \end{array} \nonumber