15.13: Plancharel and Parseval's Theorems
- Page ID
- 23203
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Parseval's Theorem
Continuous Time Fourier Series preserves signal energy
i.e.:
\[\int_{0}^{T}|f(t)|^{2} d t=T \sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} \quad \text { with unnormalized basis } e^{j \frac{2 \pi}{T} n t} \nonumber \]
\[\int_{0}^{T}|f(t)|^{2} d t=\sum_{n=-\infty}^{\infty}\left|C_{n}\right|^{2} \quad \text { with unnormalized basis } \frac{e^{j \frac{2 \pi}{T} n t}}{\sqrt{T}} \nonumber \]
\[\underbrace{\|f\|_{2}^{2}}_{L^{2}[0, T) e n e r g y}=\underbrace{\left\|C_{n}^{\prime}\right\|_{2}^{2}}_{l^{2}(Z) e n e r g y} \nonumber \]
Prove: Plancherel theorem
\[\begin{aligned}
\text { Given } f(t) & \stackrel{\text { CTFS }}{\longrightarrow} c_{n} \\
g(t) & \stackrel{\text { CTFS }}{\longrightarrow} d_{n}
\end{aligned} \nonumber \]
\[\text { Then } \int_{0}^{T} f(t) g^{*}(t) d t=T \sum_{n=-\infty}^{\infty} c_{n} d_{n}^{*} \text { with unnormalized basis } e^{j \frac{2 \pi}{T} n t} \nonumber \]
\[\int_{0}^{T} f(t) g^{*}(t) d t=\sum_{n=-\infty}^{\infty} c_{n}^{\prime}\left(d_{n}^{\prime}\right)^{*} \text { with normalized basis } \frac{e^{j \frac{2 \pi}{T} n t}}{\sqrt{T}} \nonumber \]
\[\langle f, g\rangle_{L_{2}(0, T]}=\langle c, d\rangle_{l_{2}(\mathbb{Z})} \nonumber \]
Periodic Signals Power
\[\text { Energy }=\|f\|^{2}=\int_{-\infty}^{\infty}|f(t)|^{2} d t=\infty \nonumber \]
\[\begin{aligned}
\text { Power } &=\lim _{T \rightarrow \infty} \frac{\text { Energy in }[0, T)}{T} \\
&=\lim _{T \rightarrow \infty} \frac{T \sum_{n}\left|c_{n}\right|^{2}}{T} \\
&=\sum_{n \in \mathbb{Z}}\left|c_{n}\right|^{2}(\text { unnormalized } \mathrm{FS})
\end{aligned} \nonumber \]
Example \(\PageIndex{1}\): Fourier Series of Square Pulse III - Compute the Energy

Figure \(\PageIndex{1}\)
\[f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j \frac{2 \pi}{T} n t} \stackrel{\mathbb{F}\mathbb{S}}{\rightarrow} c_{n}=\frac{1}{2} \frac{\sin \frac{\pi}{2} n}{\frac{\pi}{2} n} \nonumber \]
\[\text { energy in time domain: }\|f\|_{2}^{2}=\int_{0}^{T}|f(t)|^{2} d t=\frac{T}{2} \nonumber \]
Apply Parseval's Theorem:
\[\quad T \sum_{n}\left|c_{n}\right|^{2} \nonumber \]
\[ \begin{array}{l}
=\frac{T}{4} \sum_{n}\left(\frac{\sin \frac{\pi}{2} n}{\frac{\pi}{2} n}\right)^{2} \\
=\frac{T}{4} \frac{4}{\pi^{2}} \sum_{n} \frac{\left(\sin \frac{\pi}{2} n\right)^{2}}{n^{2}} \\
=\frac{T}{\pi^{2}} \left[ \frac{\pi^{2}}{4}+\underbrace{\sum_{n} \operatorname{odd} \frac{1}{n^{2}}}_{\frac{\pi^{2}}{4}} \right] \\
=\frac{T}{2} \square
\end{array} \nonumber \]
Plancharel Theorem
Theorem \(\PageIndex{1}\): Plancharel Theorem
The inner product of two vectors/signals is the same as the \(\ell^2\) inner product of their expansion coefficients.
Let \(\left\{b_{i}\right\}\) be an orthonormal basis for a Hilbert Space \(H\). \(x \in H\), \(y \in H\)
\[\begin{array}{l}
x=\sum_{i} \alpha_{i} b_{i} \\
y=\sum_{i} \beta_{i} b_{i}
\end{array} \nonumber \]
\[\langle x, y\rangle_{H}=\sum_{i} \alpha_{i} \overline{\beta_{i}} \nonumber \]
Example \(\PageIndex{2}\)
Applying the Fourier Series, we can go from \(f(t)\) to \(\left\{c_{n}\right\}\) and \(g(t)\) to \(\left\{d_{n}\right\}\)
\[\int_{0}^{T} f(t) \overline{g(t)} \mathrm{d} t=\sum_{n=-\infty}^{\infty} c_{n} \overline{d_{n}} \nonumber \]
inner product in time-domain = inner product of Fourier coefficients.Proof:
\[\begin{array}{l}
x=\sum_{i} \alpha_{i} b_{i} \\
y=\sum_{j} \beta_{j} b_{j}
\end{array} \nonumber \]
\[\langle x, y\rangle_{H}=\left\langle\sum_{i} \alpha_{i} b_{i}, \sum_{j} \beta_{j} b_{j}\right\rangle=\sum_{i} \alpha_{i}\left\langle\left(b_{i}, \sum_{j} \beta_{j} b_{j}\right)\right\rangle=\sum_{i} \alpha_{i} \sum_{j} \bar{\beta}_{j}\left\langle\left(b_{i}, b_{j}\right)\right\rangle=\sum_{i} \alpha_{i} \bar{\beta}_{i} \nonumber \]
by using inner product rules (Section 15.4)
Note
\(\left\langle b_{i}, b_{j}\right\rangle=0\) when \(i \neq j\) and \(\left\langle b_{i}, b_{j}\right\rangle=1\) when \(i=j\)
If Hilbert space H has a ONB, then inner products are equivalent to inner products in \(\ell^2\).
All H with ONB are somehow equivalent to \(\ell^2\).
Point of Interest
Square-summable sequences are important
Plancharels Theorem Demonstration

Parseval's Theorem: a different approach
Theorem \(\PageIndex{2}\): Parseval's Theorem
Energy of a signal = sum of squares of its expansion coefficients
Let \(x \in H\), \(\left\{b_{i}\right\}\) ONB
\[x=\sum_{i} \alpha_{i} b_{i} \nonumber \]
Then\[\left(\|x\|_{H}\right)^{2}=\sum_{i}\left(\left|\alpha_{i}\right|\right)^{2} \nonumber \]
Proof:
Directly from Plancharel
\[\left(\|x\|_{H}\right)^{2}=\langle x, x\rangle_{H}=\sum_{i} \alpha_{i} \overline{\alpha_{i}}=\sum_{i}\left(\left|\alpha_{i}\right|\right)^{2} \nonumber \]
Example \(\PageIndex{3}\)
Fourier Series \(\frac{1}{\sqrt{T}} e^{j w_{0} n t}\)
\[\begin{array}{c}
f(t)=\frac{1}{\sqrt{T}} \sum_{n} c_{n} \frac{1}{\sqrt{T}} e^{j w_{0} n t} \\
\int_{0}^{T}(|f(t)|)^{2} d t=\sum_{n=-\infty}^{\infty}\left(\left|c_{n}\right|\right)^{2}
\end{array} \nonumber \]