Skip to main content
Engineering LibreTexts

16.2: Convergence of Sequences

  • Page ID
    22943
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Sequences

    Definition: Sequence

    A sequence is a function \(g_n\) defined on the positive integers '\(n\)'. We often denote a sequence by \(\left.\left\{g_{n}\right\}\right|_{n=1} ^{\infty}\)

    Example \(\PageIndex{1}\)

    A real number sequence:

    \[g_{n}=\frac{1}{n} \nonumber \]

    Example \(\PageIndex{2}\)

    A vector sequence:

    \[g_{n}=\left(\begin{array}{c}
    \sin \left(\frac{n \pi}{2}\right) \\
    \cos \left(\frac{n \pi}{2}\right)
    \end{array}\right) \nonumber \]

    Example \(\PageIndex{3}\)

    A function sequence:

    \[g_{n}(t)=\left\{\begin{array}{ll}
    1 & \text { if } 0 \leq t<\frac{1}{n} \\
    0 & \text { otherwise }
    \end{array}\right. \nonumber \]

    Note

    A function can be thought of as an infinite dimensional vector where for each value of '\(t\)' we have one dimension

    Convergence of Real Sequences

    Definition: Limit

    A sequnce \(\left.\left\{g_{n}\right\}\right|_{n=1} ^{\infty}\) converges to a limit \(g \in \mathbb{R}\) if for every \(\varepsilon > 0\) there is an integer \(N\) such that

    \[\left|g_{i}-g\right|<\varepsilon, \quad i \geq N \nonumber \]

    We usually denote a limit by writing

    \[\operatorname{limit}_{i \rightarrow \infty} g_{i}=g \nonumber \]

    or

    \[g_{i} \rightarrow g \nonumber \]

    The above definition means that no matter how small we make \(\varepsilon\), except for a finite number of \(g_i\)'s, all points of the sequence are within distance \(\varepsilon\) of \(g\).

    Example \(\PageIndex{4}\)

    We are given the following convergent sequence:

    \[g_n=\frac{1}{n} \nonumber \]

    Intuitively we can assume the following limit:

    \[\operatorname{limit}_{n \rightarrow \infty} g_{n}=0 \nonumber \]

    Let us prove this rigorously. Say that we are given a real number \(\varepsilon > 0\). Let us choose \(N=\left\lceil\frac{1}{\varepsilon}\right\rceil\), where \([x]\) denotes the smallest integer larger than \(x\). Then for \(n≥N\) we have

    \[\left|g_{n}-0\right|=\frac{1}{n} \leq \frac{1}{N}<\varepsilon \nonumber \]

    Thus,

    \[\operatorname{limit}_{n \rightarrow \infty} g_{n}=0 \nonumber \]

    Example \(\PageIndex{5}\)

    Now let us look at the following non-convergent sequence

    \[g_{n}=\left\{\begin{array}{l}1 \text { if } n=\text { even } \\ -1 \text { if } n=\text { odd }\end{array}\right. \nonumber \]

    This sequence oscillates between 1 and -1, so it will therefore never converge.


    This page titled 16.2: Convergence of Sequences is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?