Skip to main content
Engineering LibreTexts

5.2: Multiplicative Perturbation

  • Page ID
    24257
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Theorem 5.2 (Small Gain)

    Given \(A \in \mathcal{C}^{m \times n}\),

    \[\min _{\Delta \in \mathbb{C}^{n \times m}}\left\{\|\Delta\|_{2} \mid I-A \Delta \text { is singular }\right\}=\frac{1}{\sigma_{1}(A)}\ \tag{5.4}\]

    Proof

    Suppose \(I - A \Delta\) is singular. Then there exists \(x \neq 0\) such that

    \[(I - A \Delta)x=0 \nonumber\]

    so

    \[\|A \Delta x\|_{2}=\|x\|_{2} \ \tag{5.5}\]

    From the properties of induced norms (see Lecture 4 notes),

    \[\begin{aligned}
    \|A \Delta x\|_{2} & \leq\|A\|_{2}\|\Delta x\|_{2} \\
    &=\sigma_{1}(A)\|\Delta x\|_{2}
    \end{aligned}\nonumber\]

    Upon substituting the result in Equation (5.5) for \(\|A \Delta x\|_{2}\), we find

    \[\|x\|_{2} \leq \sigma_{1}(A)\|\Delta x\|_{2}\nonumber\]

    Dividing through by \(\sigma_{1}(A)\|x\|_{2}\) yields

    \[\frac{\|\Delta x\|_{2}}{\|x\|_{2}} \geq \frac{1}{\sigma_{1}(A)}, \nonumber\]

    which implies

    \[\|\Delta\|_{2} \geq \frac{1}{\sigma_{1}(A)} \ \tag{5.6}\]

    To conclude the proof, we must show that this lower bound can be achieved. Thus, we construct a \(\Delta\) which satisfies Equation (5.6) with equality and also causes \((I - A \Delta)\) to be singular. For this, choose

    \[\Delta=\frac{1}{\sigma_{1}(A)} v_{1} u_{1}^{\prime}\nonumber\]

    Notice that the lower bound (Equation (5.6)) is satisfied with equality, i.e., \(\|\Delta\|_{2}=1 / \sigma_{1}(A)\). Now choose \(x = u_{1}\). Then:

    \[\begin{aligned}
    (I-A \Delta) x &=(I-A \Delta) u_{1} \\
    &=\left(I-\frac{A v_{1} u_{1}^{\prime}}{\sigma_{1}}\right) u_{1} \\
    &=u_{1}-\underbrace{\frac{A v_{1}}{\sigma_{1}}}_{u_{1}} \\
    &=u_{1}-u_{1} \quad\left(\text { since } A v_{1}=\sigma_{1} u_{1}\right) \\
    &=0
    \end{aligned}\nonumber\]

    This completes the proof.

    The theorem just proved is called the small gain theorem. The reason for this is that it guarantees \((I - A \Delta)\) is nonsingular provided

    \[\|\Delta\|_{2}<\frac{1}{\|A\|_{2}}\nonumber\]

    This condition is most often written as

    \[\|\Delta\|_{2}\|A\|_{2}<1, \ \tag{5.7}\]

    i.e., the product of the gains is less than one.

    Remark:

    We can actually obtain the additive perturbation result from multiplicative perturbation methods. Assume \(A\) is invertible, and \(\Delta\) is a matrix which makes its sum with \(A\) singular. Since

    \[ A + \Delta = A (I + A^{-1} \Delta ) \nonumber\]

    and \(A\) is nonsingular, then \((I + A^{-1} \Delta )\) must be singular. By our work with multiplicative perturbations, we know that the \(\Delta\) associated with the smallest \(\|\Delta\|_{2}\) that makes this quantity singular satisfies

    \[\|\Delta\|_{2}=\frac{1}{\sigma_{1}\left(A^{-1}\right)}=\sigma_{n}\tag{A}\]


    This page titled 5.2: Multiplicative Perturbation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mohammed Dahleh, Munther A. Dahleh, and George Verghese (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.