Skip to main content
Engineering LibreTexts

8.4: Exercises

  • Page ID
    24279
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise 8.1

    Suppose we wish to realize a two-input differential equation of the form

    \[\begin{aligned}
    y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=& b_{01} u_{1}+b_{11} \dot{u}_{1}+\cdots+b_{n-1,1} u_{1}^{(n-1)} \\
    &+b_{02} u_{2}+b_{12} \dot{u}_{2}+\cdots+b_{n-1,2} u_{2}^{(n-1)}
    \end{aligned}\nonumber\]

    Show how you would modify the observability canonical realization to accomplish this, still using only \(n\) integrators.

    Exercise 8.2

    How would reachability canonical realization be modified if the linear differential equation that we started with was time varying rather than time invariant?

    Exercise 8.3

    Show how to modify the reachability canonical realization- but still using only \(n\) integrators - to obtain a realization of a two-output system of the form

    \[\begin{array}{ll}
    y_{1}^{(n)}+a_{n-1} y_{1}^{(n-1)}+\cdots+a_{0} y_{1} & =c_{10} u+c_{11} \dot{u}+\cdots+c_{1, n-1} u^{(n-1)} \\
    y_{2}^{(n)}+a_{n-1} y_{2}^{(n-1)}+\cdots+a_{0} y_{2} & =c_{20} u+c_{21} \dot{u}+\cdots+c_{2, n-1} u^{(n-1)}
    \end{array}\nonumber\]

    Exercise 8.4

    Consider the two-input two-output system:

    \[\begin{array}{l}
    \dot{y}_{1}=y_{1}+\alpha u_{1}+u_{2} \\
    \dot{y}_{2}=y_{2}+u_{1}+u_{2}
    \end{array}\nonumber\]

    (a) Find a realization with the minimum number of states when \(\alpha \neq 1\).

    (b) Find a realization with the minimum number of states when \(\alpha = 1\).


    This page titled 8.4: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mohammed Dahleh, Munther A. Dahleh, and George Verghese (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.