# 1.7: Hencky Relations

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Unless $$\tau_{x y}=\pm k_{i}$$, where $$k$$ is the shear yield stress, the $$x$$- and $$y$$-directions (or axes) will not correspond to the directions of the $$\alpha -$$ and $$\beta -$$ slip lines, which are themselves at ± 45° to the directions of principal stresses acting on the element. In general, we need to examine the stresses on a small curvilinear element in the $$x$$ - $$y$$ plane upon which a shear stress and a hydrostatic stress are acting, and where the principal stresses are $$– p – k$$ and $$– p + k$$ for a situation where there is plane strain compression, such as in forging or indentation in which $$k$$ is a constant but $$p$$ can vary from point to point:

We can then identify on this diagram the directions of principal stress $$\sigma_1$$ and $$\sigma_2$$ (remembering that $$\sigma_1 > \sigma_2$$, and which of the lines are $$\alpha$$-lines and which are $$\beta$$-lines. We can also specify the angle $$\varphi$$ of the $$\alpha$$-lines with respect to the $$x$$-axis:

Suppose that the $$\alpha$$-slip line passing through the element makes an angle $$\varphi$$ with respect to reference $$x$$- and $$y$$-axes, as in the above diagram. The $$\beta$$-slip line must then make an angle of 90° $$+ \varphi$$ with respect to the x-axis, so that an anticlockwise rotation from the $$\alpha$$-slip line to the $$\beta$$-slip line crosses the direction of maximum principal stress, $$\sigma_1$$.

The direction parallel to the principal stress $$\sigma_1$$ makes an angle of 45° $$+\varphi$$ with respect to the $$x$$-axis and the direction parallel to the principal stress $$\sigma_2$$ makes an angle of $$135^{\circ}+\varphi^{\circ} 45^{\circ}-\varphi$$ with respect to the $$x$$-axis.

On a Mohr’s circle, this all looks like:

where A and B represent the stress states along the $$\alpha$$- and $$\beta$$-lines respectively.

Hence, from the above,

$\sigma_{x x}=-p-k \sin 2 \varphi$

$\sigma_{y y}=-p+k \sin 2 \varphi$

$\tau_{x y}=k \cos 2 \varphi$

while the tensile stress in the $$z$$-direction in plain strain plastic yielding is simply:

$\frac{1}{2}\left(\sigma_{x x}+\sigma_{y y}\right)=-p$

Substituting these expressions into the equilibrium equations

$\frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}=0$

$\frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}=0$

and recognizing that $$k$$ is a constant independent of $$x$$ and $$y$$, we obtain two equations for $$p$$ and $$\varphi$$ as a function of $$x$$ and $$y$$:

$-\frac{\partial p}{\partial x}-2 k \cos 2 \varphi \frac{\partial \varphi}{\partial x}-2 k \sin 2 \varphi \frac{\partial \varphi}{\partial y}=0$

$-2 k \sin 2 \varphi \frac{\partial \varphi}{\partial x}-\frac{\partial p}{\partial y}+2 k \cos 2 \varphi \frac{\partial \varphi}{\partial y}=0$

For $$\varphi=0^{\circ}$$, in which case the $$\alpha$$ and $$\beta$$ lines coincide with the external $$x$$- and $$y$$-axes respectively at a particular position, these equations become

$\frac{\partial}{\partial x}(p+2 k \varphi)=0$

$\frac{\partial}{\partial y}(p-2 k \varphi)=0$

Integrating these equations we find

$p+2 k \varphi=f_{1}(y)+C_{1} \label{eq:1}$

$p-2 k \varphi=f_{2}(x)+C_{2} \label{eq:2}$

as the most general form of the solutions of these two partial differential equations. However, we know that when $$\varphi$$ is exactly zero, $$p$$ must have the same value in both Equations $$\ref{eq:1}$$ and Eq. $$\ref{eq:2}$$. Hence it follows that $$f_{1}(x)=f_{2}(y)=0$$.

In general for points in a slip-line field we have therefore proved that the Hencky relations have to be satisfied:

Hencky relations

The hydrostatic pressure $$p$$ varies linearly with the angle $$\varphi$$ turned by a slip line.

• $$p+2 k \varphi$$ is constant along an $$\alpha$$ line
• $$p-2 k \varphi$$ is constant along a $$\beta$$ line

where the angle φ is in radians.

This page titled 1.7: Hencky Relations is shared under a CC BY-NC-SA 2.0 license and was authored, remixed, and/or curated by Dissemination of IT for the Promotion of Materials Science (DoITPoMS) via source content that was edited to the style and standards of the LibreTexts platform.