Skip to main content
Engineering LibreTexts

12.6: Analysis of Indeterminate Frames

  • Page ID
    43003
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

     

    Procedure for Analysis of Indeterminate Sway-Frames by the Moment Distribution Method

    A. Non-sway stage analysis

    •First assume the existence of an imaginary prop that prevents the frame from swaying.

    •Compute the horizontal reactions at the supports of the frame and note the difference X. This is the force to prevent sway.

    B. Sway stage analysis

    •Assume arbitrary moments to act on the columns of the frame. The magnitude of these moments will vary from column to column in proportion to \(\frac{I}{L^{2}}\).

    •Values are assumed for \(M_{2}\), and \(M_{1}\) is determined.

    •The arbitrary moments are then distributed as for the non-sway condition

    •Calculate the magnitude of the horizontal reactions at the supports for the sway condition. The summation of these reactions gives the arbitrary displacing force \(Y\).

    •Determine the ratio \(\frac{X}{Y}\). This ratio is called the sway factor.

    •Use the sway factor to multiply the distributed moments of the sway. This gives the corrected moment for the sway.

    •The final moments for the frame are the summation of the moments obtained in the non-sway stage and the corrected moment for the sway stage.

    Example 12.3

    Using the moment distribution method, determine the members’ end moments of the frame shown in Figure 12.8. \(EI =\) constant.

    fig12-8.jpg

    \(Fig. 12.8\). Frame.

    Solution

    Fixed end moment.

    \(\begin{array}{l}
    (F E M)_{A B}=-\frac{P a b^{2}}{L^{2}}=-\frac{12 \times 16 \times 8^{2}}{24^{2}}=-21.33 \mathrm{k.} \mathrm{ft} \\
    (F E M)_{B A}=+\frac{P a^{2} b}{L^{2}}=\frac{12 \times 16^{2} \times 8}{24^{2}}=+42.67 \mathrm{k} . \mathrm{ft} \\
    (F E M)_{B C}=-\frac{w L^{2}}{12}=-\frac{4 \times 14^{2}}{12}=-65.33 \mathrm{k.} \mathrm{ft} \\
    (F E M)_{C B}=\frac{w L^{2}}{12}=+65.33 \mathrm{k} . \mathrm{ft}
    \end{array}\)

    Stiffness factor.

    \(\begin{array}{l}
    K_{A B}=K_{B A}=\frac{I_{A B}}{L_{A B}}=\frac{I}{24}=0.0417 \mathrm{I} \\
    K_{B C}=K_{C B}=\frac{3}{4} \times \frac{I_{B C}}{L_{B C}}=\frac{3}{4} \times \frac{\mathrm{I}}{14}=0.0536 \mathrm{I} \\
    K_{B D}=K_{D B}=\frac{I_{B D}}{L_{B D}}=\frac{I}{28}=0.0357 \mathrm{I}
    \end{array}\)

    Distribution factor.

    \(\begin{array}{l}
    (D F)_{A B}=\frac{K_{A B}}{\sum K}=\frac{K_{A B}}{K_{A B}+0}=\frac{0.0417 \mathrm{I}}{0.0417 \mathrm{I}+\infty}=0 \\
    (D F)_{B A}=\frac{K_{B A}}{\sum K}=\frac{K_{B A}}{K_{B A}+K_{B C}+K_{B D}}=\frac{0.0417 \mathrm{I}}{0.0417 \mathrm{I}+0.0536 \mathrm{I}+0.0357 \mathrm{I}}=0.32 \\
    (D F)_{B C}=\frac{K_{B C}}{\sum K}=\frac{K_{B C}}{K_{B A}+K_{B C}+K_{B D}}=\frac{0.0536 \mathrm{I}}{0.0417 \mathrm{I}+0.0536 \mathrm{I}+0.0357 \mathrm{I}}=0.41 \\
    (D F)_{C B}=\frac{K_{C B}}{\sum K}=\frac{K_{C B}}{K_{C B}+0}=\frac{0.0536 \mathrm{I}}{0.0536 \mathrm{I}+0}=1 \\
    (D F)_{B D}=\frac{K_{B D}}{\sum K}=\frac{K_{B D}}{K_{B A}+K_{B C}+K_{B D}}=\frac{0.0357 \mathrm{I}}{0.0417 \mathrm{I}+0.0536 \mathrm{I}+0.0357 \mathrm{I}}=0.27 \\
    (D F)_{D B}=\frac{K_{D B}}{\sum K}=\frac{0.0357 \mathrm{I}}{0.0357 \mathrm{I}+\infty}=0
    \end{array}\)

    \(Table 12.3\). Distribution table.
     

    Joint A B C D
    Member AB BA BC BD CB DB
    DF 0 0.32 0.41 0.27 1 0

    FEM

    Dist. 1

    -21.33

     

    +42.67

    +7.25

    -65.33

    +9.29

    0

    +6.12

    +65.33

    -65.33

     

    CO

    Dist. 2

    +3.625

     

     

    +10.453

    -32.665

    +13.393

     

    +8.82

    +4.645

    -4.645

    +3.06

     

      +5.23         +4.41
    Total -12.48 +60.37 -75.31 +14.94 0.0 +7.47

    Final member end moments.

    Substituting the obtained values of \(E K \theta_{B}\), \(E K \theta_{C}\), and \(E K \Delta\) into the member end moment equations suggests the following:

    \(\begin{array}{l}
    M_{A B}=-12.48 \mathrm{k} . \mathrm{ft} \\
    M_{B A}=+60.37 \mathrm{k} . \mathrm{ft} \\
    M_{B C}=-75.31 \mathrm{k} . \mathrm{ft} \\
    M_{B D}=+14.94 \mathrm{k} . \mathrm{ft} \\
    M_{C B}=0 \\
    M_{D B}=+7.47 \mathrm{k} . \mathrm{ft}
    \end{array}\)

    Example 12.4

    Using the moment distribution method, determine the end moments at the supports of the frame shown in Figure 12.9. \(EI =\) constant.

    fig12-9.jpg

    \(Fig. 12.9\). Frame.

    Solution

    Fixed end moment.

    \(\begin{array}{l}
    (F E M)_{A B}=(F E M)_{B A}=(F E M)_{B C}=(F E M)_{C B}=0 \\
    (F E M)_{B D}=-\frac{w L^{2}}{12}=-\frac{2 \times 10^{2}}{12}=-16.67 \mathrm{k} . \mathrm{ft} \\
    (F E M)_{D B}=\frac{w \mathrm{~L}^{2}}{12}=+16.67 \mathrm{k} . \mathrm{ft}
    \end{array}\)

    Stiffness factor.

    \(\begin{array}{l}
    K_{A B}=K_{B A}=\frac{I_{A B}}{L_{A B}}=\frac{\mathrm{I}}{4.5}=0.222 \mathrm{I} \\
    K_{B C}=K_{C B}=\frac{I_{B C}}{L_{B C}}=\frac{\mathrm{I}}{4.5}=0.222 \mathrm{I} \\
    K_{B D}=K_{D B}=\frac{3}{4} \times \frac{I_{B D}}{L_{B D}}=\frac{3}{4} \times \frac{2 \mathrm{I}}{10}=0.15 \mathrm{I}
    \end{array}\)

    Distribution factor.

    \(\begin{array}{l}
    (D F)_{A B}=0 \\
    (D F)_{B A}=\frac{K_{B A}}{\sum K}=\frac{K_{B A}}{K_{B A}+K_{B C}+K_{B D}}=\frac{0.222 \mathrm{I}}{0.222 \mathrm{I}+0.222 \mathrm{I}+0.15 \mathrm{l}}=0.37 \\
    (D F)_{B C}=\frac{K_{B C}}{\sum K}=\frac{K_{B A}}{K_{B A}+K_{B C}+K_{B D}}=\frac{0.222 \mathrm{I}}{0.222 \mathrm{I}+0.222 \mathrm{l}+0.15 \mathrm{l}}=0.37 \\
    (D F)_{C B}=0 \\
    (D F)_{B D}=\frac{K_{B D}}{\sum K}=\frac{K_{B D}}{K_{B A}+K_{B C}+K_{B D}}=\frac{0.15 \mathrm{I}}{0.222 \mathrm{l}+0.222 \mathrm{I}+0.15 \mathrm{I}}=0.25 \\
    (D F)_{D B}=\frac{K_{D B}}{\sum K}=\frac{K_{D B}}{K_{D B}+0}=\frac{0.15 \mathrm{I}}{0.15 \mathrm{I}+0}=1
    \end{array}\)

    \(Table 12.4\). Distribution table.

    Joint A B C D E
    Member AB BA BC BD CB DB DE
    DF 0 0.37 0.37 0.25 0 1  

    CM

    FEM

    Dist. 1

     

     

     

    +6.17

     

     

    +6.17

     

    -16.67

    +4.17

     

     

    +16.67

    +63.33

    -80

     

     

    CO

    Dist. 2

    +3.09

     

     

    -11.72

     

    -11.72

    +31.67

    -7.92

    +3.09

     

       
    CO -5.86       -5.86    
    Total -2.77 -5.55 -5.55 +11.25 -2.77 +80 -80

    Final member end moments.

    \(\begin{array}{l}
    M_{A B}=-2.77 \mathrm{k} . \mathrm{ft} \\
    M_{B A}=-5.55 \mathrm{k} . \mathrm{ft} \\
    M_{B C}=-5.55 \mathrm{k} . \mathrm{ft} \\
    M_{B D}=+11.25 \mathrm{k} . \mathrm{ft} \\
    M_{C B}=-2.77 \\
    M_{D B}=+80 \mathrm{k} . \mathrm{ft} \\
    M_{D E}=-80 \mathrm{k} . \mathrm{ft}
    \end{array}\)

    Example 12.5

    Using the moment distribution method, determine the end moments at the supports of the frame shown in Figure 12.10. \(EI =\) constant.

    fig12-10.jpg

    \(Fig. 12.10\). Frame.

    Solution

    Fixed end moment.

    \(\begin{array}{l}
    (F E M)_{A B}=(F E M)_{B A}=(F E M)_{B C}=(F E M)_{C B}=0 \\
    (F E M)_{B D}=-\frac{w L^{2}}{12}=-\frac{65 \times 3^{2}}{12}=-48.75 \mathrm{kN} . \mathrm{m} \\
    (F E M)_{D B}=\frac{w L^{2}}{12}=+48.75 \mathrm{kN} . \mathrm{m}
    \end{array}\)

    Stiffness factor.

    \(\begin{array}{l}
    K_{A B}=K_{B A}=\frac{I_{A B}}{L_{A B}}=\frac{I}{3}=0.333 \mathrm{I} \\
    K_{B C}=K_{C B}=\frac{I_{B C}}{L_{B C}}=\frac{1}{3}=0.333 \mathrm{I} \\
    K_{B D}=K_{D B}=\frac{3}{4} \times \frac{I_{B D}}{L_{B D}}=\frac{3}{4} \times \frac{\mathrm{I}}{3}=0.25 \mathrm{I}
    \end{array}\)

    Distribution factor.

    \(\begin{array}{l}
    (D F)_{A B}=0 \\
    (D F)_{B A}=\frac{K_{B A}}{\sum K}=\frac{K_{B A}}{K_{B A}+K_{B C}+K_{B D}}=\frac{0.333 \mathrm{I}}{0.3331+0.3331+0.251}=0.36 \\
    (D F)_{B C}=\frac{K_{B C}}{\sum K}=\frac{K_{B A}}{K_{B A}+K_{B C}+K_{B D}}=\frac{0.333 \mathrm{I}}{0.3331+0.3331+0.25 \mathrm{l}}=0.36 \\
    (D F)_{C B}=0 \\
    (D F)_{B D}=\frac{K_{B D}}{\sum K}=\frac{K_{B D}}{K_{B A}+K_{B C}+K_{B D}}=\frac{0.25 \mathrm{l}}{0.3331+0.333 \mathrm{I}+0.25 \mathrm{I}}=0.27 \\
    (D F)_{D B}=\frac{K_{D B}}{\sum K}=\frac{K_{D B}}{K_{D B}+0}=\frac{0.25 \mathrm{l}}{0.251+0}=1
    \end{array}\)

    \(Table 12.5\). Distribution table.

    Joint A B C D
    Member AB BA BC BD CB DB
    DF 0 0.36 0.36 0.27 0 1

    FEM

    Dist. 1

     

     

    -17.55

     

    -17.55

    +48.75

    -13.16

     

    -48.75

    +48.75

    CO

    Dist. 2

    -8.78

     

     

    -8.78

     

    -8.78

    +24.38

    -6.58

    -8.78

     

     
    CO -4.39       -4.39  
    Total -13.17 -26.33 -26.33 +53.39 -13.17 0

    Final member end moments.

    \(\begin{array}{l}
    M_{A B}=-13.17 \mathrm{k} . \mathrm{ft} \\
    M_{B A}=-26.33 \mathrm{k} . \mathrm{ft} \\
    M_{B C}=-26.33 \mathrm{k} . \mathrm{ft} \\
    M_{B D}=+53.39 \mathrm{k} . \mathrm{ft} \\
    M_{C B}=-13.17 \mathrm{k} . \mathrm{ft} \\
    M_{D B}=0
    \end{array}\)

    Example 12.6

    Using the moment distribution method, determine the member end-moments of the frame with side-sway shown in Figure 12.11a.

    fig12-11.jpg

    \(Fig. 12.11\). Frame with side – sway.

    Solution

    Fixed end moment.

    \(\begin{array}{l}
    (F E M)_{A B}=-\frac{w L^{2}}{12}=-\frac{4 \times 6^{2}}{12}=-12 \mathrm{k} . \mathrm{ft} \\
    (F E M)_{B A}=\frac{w L^{2}}{12}=+12 \mathrm{k} . \mathrm{ft} \\
    (F E M)_{B C}=-\frac{P L}{8}=-\frac{20 \times 6}{8}=-15 \mathrm{k.ft} \\
    (F E M)_{C B}=+15 \mathrm{k} . \mathrm{ft}
    \end{array}\)

    Stiffness factor.

    \(\begin{array}{l}
    K_{A B}=K_{B A}=\frac{I_{A B}}{L_{A B}}=\frac{2 \mathrm{I}}{6}=0.333 \mathrm{I} \\
    K_{B C}=K_{C B}=\frac{I_{B C}}{L_{B C}}=\frac{3}{4} \times \frac{1}{6}=0.125 \mathrm{I}
    \end{array}\)

    Distribution factor.

    \(\begin{array}{l}
    (D F)_{A B}=\frac{K_{A B}}{\sum K}=\frac{K_{A B}}{K_{A B}+\infty}=\frac{0.333 \mathrm{I}}{0.333 \mathrm{I}+\infty}=0 \\
    (D F)_{B A}=\frac{K_{B A}}{\sum K}=\frac{K_{B A}}{K_{B A}+K_{B C}}=\frac{0.333 \mathrm{I}}{0.333 \mathrm{I}+0.125 \mathrm{I}}=0.73 \\
    (D F)_{B C}=\frac{K_{B C}}{\sum K}=\frac{K_{B C}}{K_{B A}+K_{B C}}=\frac{0.125 \mathrm{I}}{0.333 \mathrm{I}+0.125 \mathrm{I}}=0.27 \\
    (D F)_{C B}=\frac{K_{C B}}{\sum K}=\frac{K_{C B}}{K_{C B}+0}=\frac{0.125 \mathrm{I}}{0.125 \mathrm{I}+0}=1
    \end{array}\)

    Analysis of frame without side-sway.

    f0368-02.jpg

    \(Table 12.6\). Distribution table (no sway frame).

    Joint A B C
    Member AB BA BC CB
    DF 0 0.73 0.27 1

    FEM

    Bal. 1

    -12

     

    +12

    +2.19

    -15

    +0.81

    +15

    -15

    CO

    Bal. 2

    +1.095

     

     

    +5.475

    -7.5

    +2.025

     
    CO +2.738      
    Total -8.17 +19.67 -19.67 0

    \(\begin{array}{l}
    \sum M_{B}=0 \\
    8.17+(4)(6)(3)-19.67-6 A_{x}=0 \\
    A_{x}=\frac{[8.17+(4)(6)(3)-19.67]}{6}=10.08 \mathrm{kips} \\
    \sum F_{x}=0 \\
    (4)(6)-10.08-X=0 \\
    X=13.92 \mathrm{kips}
    \end{array}\)

    Analysis of frame with side-sway.

    Assume that \(M_{A B}=+20 \mathrm{k} . \mathrm{ft}\)

    f0369-03.jpg

    \(Table 12.7\). Distribution table (sway frame).

    Joint A B C
    Member AB BA BC CB
    DF 0 0.73 0.27 1

    FEM

    Bal. 1

    +20

     

    +20

    -14.6

     

    -5.4

     
    CO -7.3      
    Total +12.7 +5.4 -5.4 0

    \(\begin{array}{l}
    \qquad M_{B}=0 \\
    -12.7-5.4+6 A_{x}=0 \\
    A_{x}=\frac{(12.7+5.4)}{6}=3.02 \mathrm{kips}
    \end{array}\)

    f0370-01.jpg

    \(\begin{array}{l}
    \sum F_{x}=0 \\
    3.02-Y=0 \\
    Y=3.02 \mathrm{kips} \\
    \text { Corrective factor } \eta=\frac{x}{\mathrm{Y}}=\frac{13.92}{3.02}=4.61
    \end{array}\)

    Final end moments.

    \(\begin{array}{l}
    M_{A B}=-8.17+(12.7)(4.61)=50.38 \mathrm{k} . \mathrm{ft} \\
    M_{B A}=19.67+(5.4)(4.61)=44.56 \mathrm{k} . \mathrm{ft} \\
    M_{B C}=-19.67+(-5.4)(4.61)=-44.56 \mathrm{k} . \mathrm{ft} \\
    M_{C B}=0
    \end{array}\)

    Example 12.7

    A sway frame is loaded as shown in Figure 12.12a. Using the moment distribution method, determine the end moments of the members of the frame.

    fig12-12.jpg

    \(Fig. 12.12\). Loaded sway frame.

    Solution

    Fixed end moment.

    \(\begin{array}{l}
    (F E M)_{A B}=-\frac{w L^{2}}{12}=-\frac{10 \times 4^{2}}{12}=-13.33 \mathrm{kN} . \mathrm{m} \\
    (F E M)_{B A}=\frac{w L^{2}}{12}=+13.33 \mathrm{kN} . \mathrm{m}
    \end{array}\)

    Stiffness factor.

    \(\begin{array}{l}
    K_{A B}=K_{B A}=\frac{I_{A B}}{L_{A B}}=\frac{2 \mathrm{I}}{4}=0.5 \mathrm{I} \\
    K_{B C}=K_{C B}=\frac{I_{B C}}{L_{B C}}=\frac{I}{3}=0.333 \mathrm{I} \\
    K_{C D}=K_{D C}=\frac{I_{B D}}{L_{B D}}=\frac{1.5 \mathrm{I}}{4}=0.375 \mathrm{I}
    \end{array}\)

    Distribution factor.

    \(\begin{array}{l}
    (D F)_{A B}=\frac{K_{A B}}{\sum K}=\frac{K_{A B}}{K_{A B}+0}=\frac{0.5 \mathrm{I}}{0.5 \mathrm{I}+\infty}=0 \\
    (D F)_{B A}=\frac{K_{B A}}{\sum K}=\frac{K_{B A}}{K_{B A}+K_{B C}}=\frac{0.5 \mathrm{I}}{0.5 \mathrm{I}+0.333 \mathrm{I}}=0.60 \\
    (D F)_{B C}=\frac{K_{B C}}{\sum K}=\frac{K_{B C}}{K_{B A}+K_{B C}}=\frac{0.333 \mathrm{I}}{0.333 \mathrm{I}+0.5}=0.40 \\
    (D F)_{C B}=\frac{K_{C B}}{\sum K}=\frac{K_{C B}}{K_{C B}+K_{C D}}=\frac{0.333 \mathrm{I}}{0.333 \mathrm{I}+0.375 \mathrm{I}}=0.47 \\
    (D F)_{C D}=\frac{K_{C D}}{\sum K}=\frac{K_{C D}}{K_{C B}+K_{C D}}=\frac{0.375 \mathrm{I}}{0.333 \mathrm{I}+0.375 \mathrm{I}}=0.53 \\
    (D F)_{D C}=\frac{K_{D C}}{\sum K}=\frac{0.375 I}{0.375 I+\infty}=0
    \end{array}\)

    Analysis of frame without side-sway.

    \(Table 12.8\). Distribution table (no sway frame).

    Joint A B C D
    Member AB BA BC CB CD DC
    DF 0 0.60 0.4 0.47 0.53 0

    FEM

    Dist. 1

    -13.33

     

    +13.33

    -8.00

     

    -5.33

         

    CO

    Dist. 2

    -4.00

     

       

    -2.67

    +1.25

     

    +1.42

     

    CO

    Dist. 3

     

     

    -0.38

    +0.63

    -0.25

       

    +0.71

     

    CO

    Dist. 4

    -0.19

     

       

    -0.13

    +0.06

     

    +0.07

     
    CO           +0.04
    Total -17.52 +4.95 -4.95 -1.49 +1.49 +0.75

    f0372-02.jpg

    \(\begin{array}{l}
    A_{x}=\frac{[17.52-4.95+(10)(4)(2)]}{4}=23.14 \mathrm{kN} \\
    D_{x}=\frac{1.49+0.75}{4}=0.59 \mathrm{kN}
    \end{array}\)

    clipboard_e2c7b339205c5735df6b218ef4dad88e1.png

    \(X=(10)(4)+0.59-23.14=17.45 \mathrm{kN}\)

    \(Table 12.9\). Distribution table (sway frame).

    Joint A B C D
    Member AB BA BC CB CD DC
    DF 0 0.6 0.40 0.47 0.53 0

    FEM

    Dist. 1

    +133

     

    +133

    -79.8

     

    -53.2

     

    -47.0

    +100

    -53.0

    +100

     

    CO

    Dist. 2

    -39.9

     

     

    +14.1

    -23.5

    +9.40

    -26.6

    +12.50

     

    +14.10

    -26.5

     

    CO

    Dist. 3

    +7.05

     

     

    -3.75

    +6.25

    -2.50

    +4.7

    -2.21

     

    -2.49

    +7.05

     

    CO

    Dist. 4

    -1.88

     

     

    +0.67

    -1.11

    0.44

    -1.25

    +0.59

     

    +0.66

    -1.25

     

    CO

    Dist. 5

    +0.34

     

     

    -0.18

    +0.30

    -0.12

    +0.22

    -0.10

     

    -0.12

    +0.33

     

    CO

    Dist. 6

    -0.09

     

     

    +0.03

    -0.05

    +0.02

    -0.06

    +0.03

     

    +0.03

    -0.06

     

    Total +98.52 +64.07 -64.07 -59.18 +59.18 +79.57

    Analysis of frame with side-sway.

    f0374-01.jpg

    \(\begin{array}{l}
    A_{x}=\frac{98.52+64.07}{4}=40.65 \mathrm{kN} \\
    D_{x}=\frac{79.57+59.18}{4}=34.69 \mathrm{kN}
    \end{array}\)

    clipboard_e1dfa95c047b15a52368d7df388f12fc8.png

    \(\begin{array}{l}
    Y=40.65+34.69=75.34 \mathrm{kN} \\
    \eta=\frac{X}{\mathrm{Y}}=\frac{17.45}{75.34}=0.23
    \end{array}\)

    Final end moment.

    \(\begin{array}{l}
    M_{A B}=-17.52+(98.52)(0.23)=5.14 \mathrm{kN} . \mathrm{m} \\
    M_{B A}=4.95+(64.07)(0.23)=19.69 \mathrm{kN} . \mathrm{m} \\
    M_{B C}=-4.95+(-64.07)(0.23)=-19.69 \mathrm{kN} . \mathrm{m} \\
    M_{C B}=-1.49+(-59.18)(0.23)=-15.10 \mathrm{kN} . \mathrm{m} \\
    M_{C D}=1.49+(59.18)(0.23)=15.10 \mathrm{kN} . \mathrm{m} \\
    M_{D C}=0.75+(79.57)(0.23)=19.05 \mathrm{kN} . \mathrm{m}
    \end{array}\)

    Chapter Summary

    Moment distribution method of analysis of indeterminate structures: The moment distribution method of analysis is an approximate method of analysis. Its degree of accuracy is dependent on the number of iterations. In this method, it is assumed that all joints in a structure are temporarily locked or clamped and, thus, are prevented from possible rotation. Loads are applied to the members, and the moments developed at the member ends due to fixity are determined. Joints in the structure are then unlocked successively, and the unbalanced moment at each joint is distributed to members meeting at that joint. Carry over moments at members’ far ends are determined, and the process of balancing is continued until the desired level of accuracy. Members’ end moments are determined by adding up the fixed-end moment, the distributed moment, and the carry over moment. Once members’ end moments are determined, the structure becomes determinate.

    Practice Problems

    12.1 Use the moment distribution method to compute the end moment of members of the beams shown in Figure P12.1 through Figure P12.12 and draw the bending moment and shear force diagrams. \(EI = \)constant.

    figp12-1.jpg

    \(Fig. P12.1\). Beam.

    figp12-2.jpg

    \(Fig. P12.2\). Beam.

    figp12-3.jpg

    \(Fig. P12.3\). Beam.

    figp12-4.jpg

    \(Fig. P12.4\). Beam.

    figp12-5.jpg

    \(Fig. P12.5\). Beam.

    figp12-6.jpg

    \(Fig. P12.6\). Beam.

    figp12-7.jpg

    \(Fig. P12.7\). Beam.

    figp12-8.jpg

    \(Fig. P12.8\). Beam.

    figp12-9.jpg

    \(Fig. P12.9\). Beam.

    figp12-10.jpg

    \(Fig. P12.10\). Beam.

    figp12-11.jpg

    \(Fig. P12.11\). Beam.

    figp12-12.jpg

    \(Fig. P12.12\). Beam.

    12.2 Use the moment distribution method to compute the end moment of the members of the frames shown in Figure P12.13 through Figure 12.20 and draw the bending moment and shear force diagrams. \(EI = \)constant.

    figp12-13.jpg

    \(Fig. P12.13\). Frame.

    figp12-14.jpg

    \(Fig. P12.14\). Frame.

    figp12-15.jpg

    \(Fig. P12.15\). Frame.

    figp12-16.jpg

    \(Fig. P12.16\). Frame.

    figp12-17.jpg

    \(Fig. P12.17\). Frame.

    figp12-18.jpg

    \(Fig. P12.18\). Frame.

    figp12-19.jpg

    \(Fig. P12.19\). Frame.

    figp12-20.jpg

    \(Fig. P12.20\). Frame.


    This page titled 12.6: Analysis of Indeterminate Frames is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by René Alderliesten (TU Delft Open) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.