Skip to main content
Engineering LibreTexts

4.1: Time Averages

  • Page ID
    47239
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    From the essential aspects of probability we now move into the time domain, considering random signals. For this, assign to each random event \(A_i\) a complete signal, instead of a single scalar: \(A_i \rightarrow x_i(t)\). The set of all the functions that are available (or the menu) is called the ensemble of the random process. An example case is to roll a die, generating \(i = [1, 2, 3, 4, 5, 6]\), and suppose \(x_i(t) = t^i\).

    In the general case, there could be infinitely many members in the ensemble, and of course these functions could involve some other variables, for example \(x_i(t, \, y, \, z)\), where \(y\) and \(z\) are variables not related to the random event \(A_i\). Any particular \(x_i(t)\) can be considered a regular, deterministic function, if the event is known. \(x(t_o)\), taken at a specific time but without specification of which event has occurred, is a random variable.

    The theory of random processes is built on two kinds of probability calculations: those taken across time and those taken across the ensemble. For time averages to be taken, we have to consider a specific function, indexed by \(i\):

    \begin{align} m(x_i(t)) \, &= \, \lim_{T \to \infty} \dfrac{1}{T} \int\limits_{0}^{T} x_i(t) \, dt \quad \textrm{(mean)} \\[4pt] V^t (x_i(t)) \, &= \, \lim_{T \to \infty} \dfrac{1}{T} \int\limits_{0}^{T} [x_i(t) - m(x_i(t))]^2 \, dt \quad \textrm{(variance on time)} \\[4pt] R_i^t (\tau) \, &= \, \lim_{T \to \infty} \dfrac{1}{T} \int\limits_{0}^{T} [x_i(t) - m(x_i(t))] [x_i(t + \tau) - m(x_i(t))] \, dt \quad \textrm{(autocorrelation).} \end{align}

    The mean and variance have new symbols, but are calculated in a way that is consistent with our prior definitions. The autocorrelation is new and plays a central role in the definition of a spectrum. Notice that is an inner product of the function’s deviation from its mean, with a delayed version of the same, such that \(R(0) = V^t\).

    Consider the roll of a die, and the generation of functions \(x_i(t) = a \cos (i \omega_o t)\). We have

    \begin{align*} m(x_i(t)) \, &= \, \lim_{T \to \infty} \int\limits_{0}^{T} a \cos (i \omega_o t) \, dt \, = \, 0 \\[4pt] V^t(x_i(t)) \, &= \, \lim_{T \to \infty} \dfrac{1}{T} \int\limits_{0}^{T} a^2 \cos ^2 (i \omega_o t) \, dt \, = \, \dfrac{a^2}{2} \\[4pt] R^t_i (\tau) \, &= \, \lim_{T \to \infty} \dfrac{1}{T} \int\limits_{0}^{T} a^2 \cos (i \omega_o t) \cos (i \omega_o (t + \tau)) \, dt \, = \, \dfrac{a^2}{2} \cos (i \omega_o t). \end{align*}

    In this case, the autocorrelation depends explicitly on the event index \(i\), and has a peak of \(a^2/2\) at \(i \omega_o \tau = 2 \pi k\), where \(k\) is an integer. These values for \(\tau\) are precisely separated by the period of the \(i\)’th harmonic in the ensemble. When the functions line up, we get a positive \(R^t\); when they are out of phase, we get a negative \(R^t\).


    This page titled 4.1: Time Averages is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.