Skip to main content
Engineering LibreTexts

4.4: The Spectrum- Definition

  • Page ID
    47242
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Given an ergodic process \(y(t)\), with mean zero and autocorrelation \(R(\tau)\), the power spectral density of \(y(t)\), or the spectrum, is the Fourier transform of the autocorrelation:

    \begin{align} S(\omega) \, &= \int\limits_{-\infty}^{\infty} R(\tau) e^{-i \omega \tau} \, d\tau \\[4pt] R(\tau) \, &= \, \dfrac{1}{2 \pi} \int\limits_{-\infty}^{\infty} S(\omega) e^{i \omega \tau} \, d\omega \end{align}

    The spectrum is a real and even function of frequency \(\omega\), because the autocorrelation is real and even. Expanding the above definition,

    \[ S(\omega) \, = \int\limits_{-\infty}^{\infty} R(\tau) ( \cos \omega \tau - i \sin \omega \tau) \, d\tau, \]

    and clearly only the cosine will create an inner product with \(R(\tau)\).


    This page titled 4.4: The Spectrum- Definition is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.