Skip to main content
Engineering LibreTexts

6.5: Deepwater Waves

  • Page ID
    47256
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In the case that \(H \longrightarrow \infty\), the above equations simplify because

    \[ \phi(x, \, z, \, t) \longrightarrow -\dfrac{a \omega}{k} e^{kz} \sin (\omega t - kx + \psi). \]

    We find that

    \begin{align} \omega^2 \, &= \, kg \textrm{ (dispersion)} \\[4pt] p \, &= \, \rho ga e^{kz} \cos (\omega t - kx + \psi) - \rho gz; \\[4pt] u \, &= \, a \omega e^{kz} \cos (\omega t - kx + \psi); \\[4pt] w \, &= \, -a \omega e^{kz} \sin (\omega t - kx + \psi); \\[4pt] \xi_p \, &= \, a e^{kz} \sin (\omega t - kx + \psi); \\[4pt] \eta_p \, &= \, a e^{kz} \cos (\omega t - kx + \psi). \end{align}

    The dynamic part of the pressure undergoes an exponential decay in amplitude with depth. This is governed by the wave number \(k\), so that the dynamic pressure is quite low below even one-half wavelength in depth: the factor is \(e^{- \pi} \approx 0.05\). Particle motions become circular for the deepwater case. The radii of the circles also decay exponentially with depth.


    This page titled 6.5: Deepwater Waves is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.