Skip to main content
Engineering LibreTexts

10.6: Parallel Axis Theorem

  • Page ID
    50378
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Often, the mass center of an body is at a different location than a more convenient measurement point, such as the geometric center of a vehicle. The parallel axis theorem allows one to translate the mass moments of inertia (MMOI) referenced to the mass center into another frame with parallel orientation, and vice versa. Sometimes a translation of coordinates to the mass center will make the cross-inertial terms \(I_{xy}, \, I_{yz}, \, I_{xz}\), small enough that they can be ignored; in this case \(\vec{r}_G = \vec{0}\) also, so that the equations of motion are significantly reduced, as in the spinning book example.

    The formulas are:

    \begin{align} I_{xx} \,\, &= \,\, \bar{I}_{xx} + m(\delta y^2 + \delta z^2) \\[4pt] I_{yy} \,\, &= \,\, \bar{I}_{yy} + m(\delta x^2 + \delta z^2) \\[4pt] I_{zz} \,\, &= \,\, \bar{I}_{zz} + m(\delta x^2 + \delta y^2) \\[4pt] I_{yz} \,\, &= \,\, \bar{I}_{yz} - m \delta y \delta z \\[4pt] I_{xz} \,\, &= \,\, \bar{I}_{xz} - m \delta x \delta z \\[4pt] I_{xy} \,\, &= \,\, \bar{I}_{xy} - m \delta x \delta y, \end{align}

    where \(\bar{I}\) represents an MMOI in the axes of the mass center, and \(\delta x\), for example, is the translation of the \(x\)-axis to the new frame. Note that translation of MMOI using the parallel axis theorem must be either to or from a frame resting exactly at the center of gravity.


    This page titled 10.6: Parallel Axis Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.