3.9: Summary
- Page ID
- 49085
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We found, that the lowest order reversible linear effect, GVD, together with the lowest order reversible nonlinear effect in a homogeneous and isotropic medium, SPM, leads to the Nonlinear Schrödinger Equation for the envelope of the wave. This equation describes a Hamiltonian system. The equation is integrable, i.e., it does possess an infinite number of conserved quantities. The equation has soliton solutions, which show complicated but persistent oscillatory behavior. Especially, the fundamental soliton, a sech-shaped pulse, shows no dispersion which makes them ideal for long distance optical communication. Due to the universality of the NSE, this dynamics is also extremely important for modelocked lasers once the pulses become so short that the spectra experience the dispersion and the peak powers are high enough that nonlinear effects become important. In general, this is the case for subpicosecond pulses. Further, we found a perturbation theory, which enables us to decompose a solution of the NSE close to a fundamental soliton as a fundamental soliton and continuum radiation. We showed that periodic perturbations of the soliton may lead to side-band generation, if the nonlinear phase shift of the soliton within a period of the perturbation becomes comparable to \(\pi/4\). Soliton perturbation theory will also give the frame work for studying noise in mode-locked lasers later.
A medium with positive dispersion and self-phase modulation with the same sign can be used for pulse compression. The major problem in pulse compression is to find a compressor that can that exactly inverts the group delay caused by spectral broadening. Depending on bandwith this can be achieved by grating, prism, chirped mirrors, puls shapers, AOPDFs or a combination thereof.
Bibliography
[1] L. Allen and J. H. Eberly: Optical Resonance and Two-Level Atoms, Dover (1987).
[2] A. Yariv, ”Quantum Electronics”, Wiley Interscience (1975).
[3] A. Hasegawa and F. Tapert, ”Transmission of stationary nonlinear op- tical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, pp. 142 - 144 (1973).
[4] V. E. Zakharov and A. B. Shabat, ”Exact Theory of Two-Dimensional Self-Focusing and One-Dimensional Self-Modulation of Waves in non- linear Media”, Zh. Eksp. Teor. Fiz. 34, pp. 61 - 68 (1971); [Sov. Phys. - JETP 34, pp. 62 - 69 (1972).]
[5] P. G. Drazin, and R. S. Johnson, ”Solitons: An Introduc- tion,”Cambridge University Press, New York (1990).
[6] G. B. Witham, ”Linear and Nonlinear Waves,” in Pure & Applied Mathematics Series, New York: Wiley-Interscience (1974).
[7] G. L. Lamb, Jr., ”Elements of Soliton Theory,” New York: Wiley- Interscience (1980).
[8] F. Schwabl, ”Quantenmechnik,” Springer, Berlin (1988).
[9] L. F. Mollenauer and R. H. Stolen, ”The soliton laser” Opt. Lett. 9, pp. 13 — 15 (1984).
[10] J. D. Moores, K. Bergman, H. A. Haus and E. P. Ippen, ”Optical switching using fiber ring reflectors,” J. Opt. Soc. Am. B 8, pp. 594 — 601 (1990).
[11] L. F. Mollenauer, R. H. Stolen and J. P. Gordon, ”Experimental ob- servation of picosecond pulse narrowing and solitons in optical fibers”, Phys. Rev. Lett. 45, pp. 1095 — 1098 (1980).
[12] H. A. Haus and M. N. Islam, ”Theory of the soliton laser,” IEEE J. Quant. Electron. QE-21, pp. 1172 — 88 (1985).
[13] N. J. Zabusky and M. D. Kruskal, ”Interactions of ’solitons’ in a colli- sionless plasma and the recurrence of initial states,” Phys. Rev. Lett., 15, pp. 240 — 243 (1965).
[14] C. S. Gardener, J. M. Greene, M. D. Kruskal and R. M. Miura, ”Method for solving the Korteweg-de Vries equation,” Phys. Rev. Lett. 19, pp. 1095 — 1097 (1967).
[15] M. J. Ablowitz, D. J. Kaup, A. C. Newell & H. Segur, ”The inverse scattering transform - Fourier analysis for nonlinear problems,” Stud. Appl. Math. 53, pp. 249 — 315 (1974).
[16] A. C. Newell, ”The Inverse Scattering Transform,” In Topics in current physics. Solitons. ed. by R. Bullogh & P. Caudrey, Berlin, Springer (1978).
[17] V. A. Marchenko, ”On the reconstruction of the potential energy form phases of the scattered waves,” Dokl. Akad. Nauk SSSR, 104 695 — 698 (1955).
[18] H. A. Haus, ”Optical Fiber Solitons, Their Properties and Uses,” Proc. of the IEEE 81, pp. 970 — 983 (1993).
[19] R. Y. Chiao, E. Garmire, and C. H. Townes, ”Self-trapping of optical beams,” Phys. Rev. Lett. 13, pp. 479 — 482 (1964).
[20] A. S. Davydov, ”Solitons in molecular systems”, Physica Scripta 20, pp. 387 — 394 (1979). London: John Murray.
[21] Y. Kodama, and A. Hasegawa, ”Nonlinear Pulse Propagation in a Monomode Dielectric Guide,” IEEE J. Quantum Electron. QE-23 pp. 510 — 524 (1987).
[22] A. Hasegawa, ”Optical Solitons in Fibers,” Springer Verlag, Berlin (1989).
[23] G. Placek, Marx Handbuch der Radiologie, ed. by E. Marx (Academis- che Verlagsgesellschaft, Leipzig, Germany, 1934), 2nd ed., Vol. VI, Part II, p. 209 — 374.
[24] F. X. Kärtner, D. Dougherty, H. A. Haus, and E. P. Ippen, ”Raman Noise and Soliton Squeezing,” J. Opt. Soc. Am. B 11 , pp. 1267 — 1276, (1994).
[25] V. I. Karpman, and E. M. Maslov, ”Perturbation Theory for Solitons,” Sov. Phys. JETP 46 pp. 281 — 291 (1977); J. P. Keener and D. W. McLaughlin, ”Solitons under Perturbations,” Phys. Rev. A 16, pp. 777 — 790 (1977).
[26] D. J. Kaup, and A. C. Newell, ”Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory,” Proc. R. Soc. Lond. A. 361, pp. 413 — 446 (1978).
[27] H. A. Haus and Y. Lai, ”Quantum theory of soliton squeezing: a lin- earized approach,” Opt. Soc. Am B 7, 386 — 392 (1990).
[28] D. J. Kaup, ”Perturbation theory for solitons in optical fibers”, Phys. Rev. A 42, pp. 5689 — 5694 (1990).
[29] J. P. Gordon and H. A. Haus, ”Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665 — 668.(1986) .
[30] S. M. J. Kelly, ”Characteristic sideband instability of periodically am- plified average solitons”, Electronics Letters, 28, pp. 806 - 807 (1992).
[31] J. N. Elgin and S. M. J. Kelly, ”Spectral modulation and the growth of resonant modes associated with periodically amplified solitons”, Opt. Lett., 21, pp. 787 - 789 (1993).
[32] J. Satsuma, and N. Yajima, ”Initial Value Problems of One- Dimensional Self-Modulation of Nonlinear Waves in DIspersive Media,” Supplement of the Progress in Theoretical Physics, 55, pp. 284 — 306 (1974).
[33] J. P. Gordon, ”Dispersive perturbations of solitons of the nonlinear Schrödinger equation”, J. Opt. Soc. Am. B 9, pp. 91 — 97 (1992).
[34] F. M. Mitschke and L. F. Mollenauer, ”Discovery of the soliton self-frequency shift”, Opt. Lett. 11, pp. 659 — 661 (1986).
[35] J. P. Gordon, ”Theory of the soliton self-frequency shift”, Opt. Lett.11, pp. 662 — 664 (1986).
[36] A. C. Newell and J. V. Moloney, ”Nonlinear Optics,” Addison-Wesley Publishing Company, Redwood City, (1993).
[37] A.M. Kowalewicz, A. T. Zare, F. X. Kärtner, J. G. Fujimoto, S. De- wald, U. Morgner, V. Scheuer, and G. Angelow, “Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens modelocked Ti:Al2O3 os- cillator,” Opt. Lett., 28, 1507-09, 2003.
[38] F. Gires, P. Tournois, C.R. Acad. Sci. (Paris) 258 6112 (1964)
[39] J.A. Giordmaine, M.A. Duguaym J.W. Hansen: Compression of optical pulse, IEEE J. Quantum Electron. 4 252-255 (1968)
[40] R. A. Fisher, P. L. Kelly, T. K. Gustafson: Subpicosecond pulse generation using the optical Kerr effect, Appl. Phys. Lett. 14 140-143 (1969)
[41] A. Laubereau: External frequency modulation and compression of picosecond pulses, Phys. Lett. 29A 539-540 (1969)
[42] H. Nakatsuka, D. Grischkowsky, A. C. Balant: Nonlinear picosecond- pulse propagation through optical fibers with positive group velocity dispersion, Phys. Rev. Lett. 47 910-913 (1981)
[43] A.J. Campillo, S.L. Shapiro, B.R. Suydam: Periodic breakup of optical beams due to self-focusing, Appl. Phys. Lett. 23 628-630 (1973)
[44] E.P. Ippen, C.V. Shank, T.K. Gustafson: Self-phase modulation of picosecond pulses in optical fibers, Appl. Phys. Lett. 24 190-192 (1974)
[45] R.H. Stolen, C. Lin: Self-phase-modulation in silica optical fibers, Phys. Rev. A 17 1448-1453 (1978)
[46] R.L. Fork, C.H.B. Cruz, P.C. Becker, C.V. Shank: Compression of optical pulses to six femtoseconds by using cubic phase compensation, Opt. Lett. 12 483-485 (1987)
[47] A. Baltuška, Z. Wei, M.S. Pshenichnikov, D.A. Wiersma, R. Szipöcs: Optical pulse compression to 5 fs at a 1-MHz repetition rate, Opt. Lett. 22, 102-104 (1997)
[48] M. Nisoli, S. De Silvestri, O. Svelto: Generation of high energy 10 fs pulses by a new pulse compression technique, Appl. Phys. Lett. 68 2793-2795 (1996)
[49] M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spiel- mann, S. Sartania, F. Krausz: Compression of high-energy laser pulses below 5 fs, Opt. Lett. 22 522-524 (1997)
[50] G. Cerullo, S. De Silvestri, M. Nisoli, S. Sartania, S. Stagira, O. Svelto: Few-optical-cycle laser pulses: from high peak power to frequency tun- ability, IEEE J. Selec. Topics in Quantum Electr. 6 948-958 (2000)
[51] B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, O. Svelto: Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum, Opt. Lett. 28 1987-1989 (2003)
[52] G. P. Agrawal: Nonlinear Fiber Optics (Academic Press, San Diego 1995)
[53] Ultrashort Laser Pulses, Ed. W. Kaiser, Springer Verlag, 1988.
[54] A. Baltuška, Z. Wei, R. Szipöcs, M. S. Pshenichnikov, D. A. Wiersma: All solid-state cavity-dumped sub-5-fs laser, Appl. Phys. B 65 175-188 (1997)
[55] E.B. Treacy: Compression of picosecond light pulses, Phys. Lett. 28A, 34-35 (1968)
[56] R.L. Fork, O.E. Martinez, J.P. Gordon: Negative dispersion using pairs of prisms, Opt. Lett. 9 150-152 (1984)
[57] R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz, Opt. Lett. 19, 201—203 (1994).
[58] R. Ell, U. Morgner, F.X. K\"{a}rtner, J.G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, Opt. Lett. 26, 373-375 (2001)
[59] E.J. Mayer, J. Möbius, A. Euteneuer, W.W. Rühle, R. Szipöcs, Opt.Lett. 22, 528 (1997).
[60] K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Theriault, D. C. Johnson, J. Albert, K. Takiguch, Opt. Lett. 19, 1314-1316 (1994).
[61] A. V. Tikhonravov, M. K. Trubetskov, A. A. Tikhonravov, OSA Topical Meeting on Optical Interference Coatings, Tucson Arizona, February 7- 12, 1998.
[62] B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones and A. G. Van Engen, Opt. Lett. vol. 25, pp. 175-278, 2000.
[63] R. Scipöcs, G. DeBell, A. V. Tikhonravov, M. K. Trubetskov, Ultrafast Optics Conference, Ascona Switzerland, July 11-16, 1999.
[64] M. Matsuhara, K. O. Hill, Applied Optics 13, 2886-2888 (1974).
[65] G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, J. Opt. Soc. Am. B 18, 1747-50 (2001).
[66] N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, Appl. Phys. B 71, 509-522 (2000).
[67] G. Steinmeyer, Conference on Lasers and Electro-Optics, Cleo 2003, Baltimore, June 2-6th, 2003.
[68] J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, Appl. Opt. 35, 644-658, (1996).
[69] A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. Hänsch, and F. Krausz, Phys.Rev.Lett. 85, 740 (2000).
[70] R. Szipöcs and A. Kohazi-Kis, Applied Physics B 65, 115-135 (1997).
[71] V. Laude and P. Tournois, paper CTuR4, Conference on Lasers and Electrooptics, Baltimore, USA, (1999).
[72] R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovácz, G. DeBell, L. Mott, A. W. Louderback, A. V. Tikhonravov, M. K. Trubetskov, Applied Physics B 70, S51-557 (2000).
[73] N. Matuschek, F.X. Kärtner, U. Keller, IEEE Journal of Quantum Electronics ,JQE- 5, 129-137 (1999).
[74] V. Scheuer, M. Tilsch, and T. Tschudi, SPIE Conf. Proc.2253, 445-454,(1994).
[75] M. Tilsch, V. Scheuer, and T. Tschudi, SPIE Conf. Proc.2253, 414-422 (1994).
[76] F. X. Kärtner, U. Morgner, T. R. Schibli, E. P. Ippen J. G. Fujimoto, V. Scheuer, G. Angelow and T. Tschudi, J. of the Opt. Soc. of Am. 18, 882-885 (2001).
[77] K. Naganuma, K. Mogi, H. Yamada, Opt. Lett. 15, 393 (1990).
[78] I. Walmsley, L. Waxer, C. Dorrer: The role of dispersion in ultrafastoptics, Rev. Scient. Instrum. 72 1-29 (2001)
[79] J. Zhou, G. Taft, C.-P. Huang, M.M. Murnane, H.C. Kapteyn, I.P. Christov: Pulse evolution in a broad-bandwidth Ti:sapphire laser, Opt. Lett. 19 1149-1151 (1994)
[80] R. Szipöcs, K. Ferencz, C. Spielmann, and F. Krausz: Chirped multi- layer coatings for broadband dispersion control in femtosecond lasers, Opt. Lett. 19 201-203 (1994)
[81] N. Matuschek, F. X. Kärtner, U. Keller: Theory of double-chirped mirrors, IEEE J. Select. Topics Quantum Electron. 4 197-208 (1998)
[82] G. Tempea, F. Krausz, Ch. Spielmann, K. Ferencz: Dispersion control over 150 THz with chirped dielectric mirrors, IEEE J. Select. Topics Quantum Electron. 4 193-196 (1998)
[83] F.X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H.A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, T. Tschudi: Design and fabrication of double-chirped mirrors, Opt. Lett. 22 831-833 (1997)
[84] A.M. Weiner, D.E. Leaird, J.S. Patel, J.R. Wullert: Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator, Opt. Lett. 15 326-328 (1990)
[85] D. Yelin, D. Meshulach, Y. Silberberg: Adaptive femtosecond pulse compression, Opt. Lett. 22 1793-1795 (1997)
[86] N. Karasawa, L. Li, A. Suguro, H. Shigekawa, R. Morita, M. Ya- mashita: Optical pulse compression to 5.0 fs by use of only a spa- tial light modulator for phase compensation, J. Opt. Soc. Am. B 18 1742-1746 (2001)
[87] C. Iaconis, I.A. Walmsley: Self-referencing spectral interferometry for measuring ultrashort optical pulses, IEEE J. Quantum Electron. 35 501-509 (1999)
[88] A.M. Weiner: Femtosecond pulse shaping using spatial light modula- tors, Rev. Scient. Instrum. 71 1929-1960 (2000)
[89] C. Dorrer, F. Salin, F. Verluise, J.P. Huignard: Programmable phase control of femtosecond pulses by use of a nonpixelated spatial light modulator, Opt. Lett. 23 709-711 (1998)
[90] M.A. Dugan, J.X. Tull, W.S. Warren: High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses, J. Opt. Soc. Am. B 14 2348-2358 (1997)
[91] P. Tournois: Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems, Optics Comm. 140 245-249 (1997)
[92] F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, P. Tournois: Ampli- tude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping, Opt. Lett. 25 575-577 (2000)
[93] J.P. Heritage, E.W. Chase, R.N. Thurston, M. Stern: A simple fem- tosecond optical third-order disperser, in Conference on Lasers and Electro-Optics, Vol. 10 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), paper CTuB3.
[94] E. Zeek, K. Maginnis, S. Backus, U. Russek, M.M. Murnane, G. Mourou, H. Kapteyn, G. Vdovin: Pulse compression by use of de- formable mirrors, Opt. Lett. 24 493-495 (2000)
[95] A. Baltuška, T. Fuji, T. Kobayashi: Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control, Opt. Lett. 27 306-308 (2002)
[96] E.A.J. Marcatili, R.A. Schmeltzer: Hollow metallic and dielectric waveguide for long distance optical transmission and laser, Bell Syst. Tech. J. 43 1783-1809 (1964)
[97] E.-G. Neumann: Single-Mode Fibers (Springer-Verlag, Berlin 1988)
[98] M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, Ch. Spielmann, F. Krausz: A novel high energy pulse compression system: generation of multigigawatt sub-5-fs pulses, Appl. Phys. B 65 189-196 (1997)
[99] M. Nisoli, E. Priori, G. Sansone, S. Stagira, G. Cerullo, S. De Silvestri, C. Altucci, R. Bruzzese, C. de Lisio, P. Villoresi, L. Poletto, M. Pas- colini, G. Tondello: High-Brightness High-Order Harmonic Generation by Truncated Bessel Beams in the Sub-10-fs Regime, Phys. Rev. Lett. 88 33902-1-4 (2002)
[100] T. Brabec, F. Krausz: Nonlinear Optical Pulse Propagation in the Single-Cycle Regime, Phys. Rev. Lett. 78 3282-3285 (1997)
[101] S. Stagira, E. Priori, G. Sansone, M. Nisoli, S. De Silvestri, Ch. Gader- maier: Nonlinear guided propagation of few-optical-cycle laser pulses with arbitrary polarization state, Phys. Rev. A (in press) (2002)
[102] H.J. Lehmeier, W. Leupacher, A. Penzkofer: Nonresonant third or- der hyperpolarizability of rare gases and N2 determined by third order harmonic generation, Opt. Commun. 56 67-72 (1985)
[103] A. Dalgarno, A. E. Kingston: The refractive indices and Verdet con- stants of the inert gases, Proc. R. Soc. London Ser. A 259 424-429 (1966)
[104] R. W. Boyd, Nonlinear Optics, Academic Press, San Diego (1992)
[105]
[106] G. Tempea, T. Brabec: Theory of self-focusing in a hollow waveguide, Opt. Lett. 23, 762-764 (1998)
[107] S. De Silvestri, M. Nisoli, G. Sansone, S. Stagira, and O. Svelto, "Few- Cycle Pulses by External Compression" in "Few-Cycle Pulse Gener- ation and Its Applications, Ed. by F. X. Kaertner, Springer Verlag, 2004.
[108] T. Brabec, F. Krausz: Intense few-cycle laser fields: frontiers of non- linear optics, Rev. Mod. Phys. 72 545-591 (2000)
[109] D. E. Spence, P. N. Kean, W. Sibbett: 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett. 16 42-44 (1991)
[110] D. Strickland, G. Mourou: Compression of amplified chirped optical pulses, Opt. Commun. 56 219-221 (1985)