4.7: Summary
- Page ID
- 49297
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Starting from a simple two level laser and absorber model, we characterized the dynamics of solid-state lasers mode-locked and Q-switched by a saturable absorber. The unique properties of solid-state laser materials, i.e. their long upper-state life time and their small cross sections for stimulated emission, allow for a separation of the laser dynamics on at least two time scales. One process is the energy build-up and decay, which occurs typically on a time scale of the upper state lifetime or cavity decay time of the laser. The other process is the pulse shaping, which occurs within several roundtrips in the cavity. Separating these processes, we can distinguish between the different laser dynamics called cw-Q-switching, Q-switched mode locking and cw-mode locking. We found the stability boundaries of the different regimes, which give us guidelines for the design of absorbers for a given solid state laser to favour one of these regimes. Semiconductor absorbers are a good choice for saturable absorbers to modelock lasers, since the carrier lifetime can be engineered by low temperature growth [20]. When the pulses become short enough, the laser pulse saturates the absorber much more efficiently, which stabilizes the laser against undesired Q-switched mode locking. It has been demonstrated experimentally, that this technique can control the laser dynamics of a large variety of solid-state lasers, such as \(\ce{Nd: YAG}\), \(\ce{Nd:YLF}\), \(\ce{Nd:YV}0_4\), [18] in the picosecond regime.
With semiconductor devices and soliton formation due to negative GVD and SPM, we can use similar semiconductor absorbers to modelock the lasers in the femtosecond regime [35]. The stability criteria derived here can be ap- plied to both picosecond and femtosecond lasers. However, the characteristics of the absorber dynamics may change drastically when going from picosecond to femtosecond pulses [36]. Especially, the saturation energy may depend not only on excitation wavelength, but also on the pulsewidth. In addition there may be additional loss mechanismes for the pulse, for example due to soliton formation there are additional filter losses of the pulse which couple to the energy of the pulse via the area theorem. This has to be taken into account, before applying the theory to fs-laser systems, which will be discussed in more detail later.
Bibliography
[1] R. W. Hellwarth, Eds., Advances in Quantum Electronics, Columbia Press, New York (1961).
[2] A. E. Siegman, ”Lasers,” University Science Books, Mill Valley, Califor- nia (1986).
[3] O. Svelto, "Principles of Lasers," Plenum Press, NY 1998.
[4] W. G. Wagner and B. A. Lengyel ”Evolution of the Giant Pulse in a
Laser,” J. Appl. Opt. 34, 2040 — 2046 (1963).
[5] J. J. Degnan, ”Theory of the Optimally Coupled Q-switched Laser,” IEEE J. Quantum Electron. QE-25, 214 — 220 (1989). and ”Optimiza- tion of Passively Q-switched Lasers,” IEEE J. Quantum Electron. QE- 31, 1890 — 1901 (1995).
[6] J. J. Zayhowski, C. D. III, Optics Lett. 17, 1201 (1992)
[7] 5. H. Plaessmann, K. S. Yamada, C. E. Rich, W. M. Grossman, Applied Optics 32, 6618 (1993)
[8] J. J. Zayhowski, C. Dill, ”Diode-pumped passively Q-switched picosec- ond microchip lasers,” Opt. Lett. 19, pp. 1427 — 1429 (1994).
[9] J. J. Zayhowski, J. Ochoa, C. Dill, ”UV generation with passively Q- switched picosecond microchip lasers,” Conference on Lasers and Electro Optics, (Baltimore, USA) 1995, paper CTuM2 p. 139.
[10] P. Wang, S.-H. Zhou, K. K. Lee, Y. C. Chen, ”Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser,” Opt. Com 114, pp. 439 — 441 (1995).
[11] J. J. Zayhowski, ”Limits imposed by spatial hole burning on the single- mode operation of standing-wave laser cavities,” Opt. Lett. 15, 431 — 433 (1990).
[12] B. Braun, F. X. Kärtner, U. Keller, J.-P. Meyn and G. Huber, ”Passively Q-switched 180 ps Nd:LaSc3(BO3)4 microchip laser,” Opt. Lett. 21, pp. 405 — 407 (1996).
[13] B. Braun, F. X. Kärtner, G. Zhang, M. Moser and U. Keller, ”56 ps Passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381-383, 1997.
[14] O. Forster, ”Analysis I, Differential- und Integralrechnung einer Verän- derlichen,” Vieweg, Braunschweig (1983).
[15] E. P. Ippen, ”Principles of passive mode locking,” Appl. Phys. B 58, pp. 159 — 170 (1994).
[16] A. Penzkofer, ”Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond Pulses,” Appl. Phys. B 46, pp. 43 — 60 (1988).
[17] U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, M. T. Asom, ”Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett. 17, pp. 505 — 507 (1992).
[18] U. Keller, ”Ultrafast all-solid-state laser technology,” Appl. Phys. B 58, pp. 347-363 (1994).
[19] J. P. Meyn, ”Neodym-Lanthan-Scandium-Borat: Ein neues Material für miniaturisierte Festkörperlaser,” PhD Thesis, Universität Hamburg.
[20] G. L. Witt, R. Calawa, U. Mishra, E. Weber, Eds., ”Low Temperature (LT) GaAs and Related Materials,” 241 Pittsburgh, (1992).
[21] H. Haken, ”Synergetics: An Introduction,” Springer Verlag, Berlin (1983).
[22] A. Yariv, ”Quantum Electronics”, Wiley Interscience (1975).
[23] H. A. Haus, ”Parameter ranges for cw passive modelocking,” IEEE J.
Quantum Electron., QE-12, pp. 169 — 176 (1976).
[24] E. P. Ippen, L. Y. Liu, H. A. Haus, ”Self-starting condition for additive-
pulse modelocked lasers,” Opt. Lett. 15, pp. 183 — 18 (1990).
[25] F. Krausz, T. Brabec, C. Spielmann, ”Self-starting passive modelock-
ing,” Opt. Lett. 16, pp. 235 — 237 (1991).
[26] H. A. Haus, E. P. Ippen, ”Self-starting of passively mode-locked lasers,”
Opt. Lett. 16, pp. 1331 — 1333 (1991).
[27] J. Herrmann, ”Starting dynamic, self-starting condition and mode- locking threshold in passive, coupled-cavity or Kerr-lens mode-locked solid-state lasers,” Opt. Com. 98, pp. 111 — 116 (1993).
[28] C. J. Chen, P. K. A. Wai and C. R. Menyuk, ”Self-starting of passively modelocked lasers with fast saturable absorbers,” Opt. Lett. 20, pp. 350 — 352 (1995).
[29] R. W. Boyd, ”Nonlinear Optics,” Academic Press, New York, (1992).
[30] L. R. Brovelli, U. Keller, T. H. Chiu, ”Design and Operation of Antireso- nant Fabry-Perot Saturable Semiconductor Absorbers for Mode-Locked Solid-State Lasers,” J. Opt. Soc. of Am. B 12, pp. 311 — 322 (1995).
[31] K. Smith, E. J. Greer, R. Wyatt, P. Wheatley, N. J. Doran, ”Totally integrated erbium fiber soliton laser pumped by laser diode,” Electr. Lett. 27, pp. 244 — 245 (1990).
[32] U. Keller, T. K. Woodward, D. L. Sivco, A. Y. Cho, ”Coupled-Cavity Resonant Passive Modelocked Nd:Yttrium Lithium Fluoride Laser,” Opt. Lett. 16 pp. 390 — 392 (1991).
[33] U. Keller, T. H. Chiu, ”Resonant passive modelocked Nd:YLF laser,” IEEE J. Quantum Electron. QE-28, pp. 1710 — 1721 (1992).
[34] G. P. Agrawal, N. A. Olsson, ”Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” IEEE J. Quantum Electron. 25, pp. 2297 - 2306 (1989).
[35] D. Kopf, K. J. Weingarten, L. Brovelli, M. Kamp, U. Keller, ”Diode- pumped 100-fs passively mode-locked Cr:LiSAF using an A-FPSA,” Opt. Lett. 19, pp. (1994).
[36] W. H. Knox, D. S. Chemla G. Livescu, J. E. Cunningham, and J. E. Henry, ”Femtosecond Carrier Thermalization in Dense Fermi Seas,” Phys. Rev. Lett. 61, 1290 — 1293 (1988).
[37] B. Braun, U. Keller, ”Single frequency Q-switched ring laser with an antiresonant Fabry-Perot saturable absorber,” Opt. Lett. 20, pp. 1020 — 1022 (1995).
[38] S. A. Kutovoi, V. V. Laptev, S. Y. Matsnev, ”Lanthanum scandoborate as a new highly efficient active medium of solid state lasers,” Sov. J. Quantum Electr. 21, pp. 131 — 132 (1991).
[39] B. Beier, J.-P. Meyn, R. Knappe, K.-J. Boller, G. Huber, R. Wallenstein, Appl. Phys. B 58, 381 — (1994).