Skip to main content
Engineering LibreTexts

15.3: Norms

  • Page ID
    22937
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Introduction

    This module will explain norms, a mathematical concept that provides a notion of the size of a vector. Specifically, the general definition of a norm will be discussed and discrete time signal norms will be presented.

    Norms

    The norm of a vector is a real number that represents the "size" of the vector.

    Example \(\PageIndex{1}\)

    In \(\mathbb{R}^2\), we can define a norm to be a vectors geometric length.

    norm_f1.png

    Figure \(\PageIndex{1}\)

    \(\boldsymbol{x}=(x_0,x_1)^T\), norm \(\|\boldsymbol{x}\|=\sqrt{x_{0}^{2}+x_{1}^{2}}\)

    Mathematically, a norm \(\|\cdot\|\) is just a function (taking a vector and returning a real number) that satisfies three rules.

    To be a norm, \(\|\cdot\|\) must satisfy:

    1. the norm of every vector is positive \(\|x\|>0\), \(x \in S\)
    2. scaling a vector scales the norm by the same amount \(\|\alpha x\|=|\alpha|\|x\|\) for all vectors \(x\) and scalars \(\alpha\)
    3. Triangle Property: \(\|x+y\| \leq\|x\|+\|y\|\) for all vectors \(x\), \(y\). "The "size" of the sum of two vectors is less than or equal to the sum of their sizes"

    A vector space (Section 15.2) with a well defined norm is called a normed vector space or normed linear space.

    Examples

    Example \(\PageIndex{2}\)

    \(\mathbb{R}^n\) (or \(\mathbb{C}^n\)), \(\boldsymbol{x}=\left(\begin{array}{c}
    x_{0} \\
    x_{1} \\
    \dots \\
    x_{n-1}
    \end{array}\right)\), \(\|x\|_{1}=\sum_{i=0}^{n-1}\left|x_{i}\right|\), \(\mathbb{R}^n\) with this norm is called \(\ell^{1}([0, n-1])\).

    norm_f2.png
    Figure \(\PageIndex{2}\): Collection of all \(\boldsymbol{x} \in \mathbb{R}^2\) with \(\|x\|_{1}=1\)

    Example \(\PageIndex{3}\)

    \(\mathbb{R}^n\) (or \(\mathbb{C}^n\)), with norm \(\|x\|_{2}=\left(\sum_{i=0}^{n-1}\left(\left|x_{i}\right|\right)^{2}\right)^{\frac{1}{2}}\), \(\mathbb{R}^n\) is called \(\ell^{2}([0, n-1])\) (the usual "Euclidean"norm).

    norm_f3.png
    Figure \(\PageIndex{3}\): Collection of all \(\boldsymbol{x} \in \mathbb{R}^{2}\) with \(\|x\|_{2}=1\)

    Example \(\PageIndex{4}\)

    \(\mathbb{R}^n\) (or \(\mathbb{C}^n\)), with norm \(\|x\|_{\infty}=\max _{i}\left\{i,\left|x_{i}\right|\right\}\) is called \(\ell^{\infty}([0, n-1])\)

    norm_f4.png
    Figure \(\PageIndex{4}\): \(x \in \mathbb{R}^2\) with \(\|x\|_{\infty}=1\)

    Spaces of Sequences and Functions

    We can define similar norms for spaces of sequences and functions.

    Discrete time signals = sequences of numbers

    \[x[n]=\left\{\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right\} \nonumber \]

    • \(\|x(n)\|_{1}=\sum_{i=-\infty}^{\infty}|x[i]|, x[n] \in \ell^{1}(\mathbb{Z}) \Rightarrow\left(\|x\|_{1}<\infty\right)\)
    • \(\|x(n)\|_{2}=\left(\sum_{i=-\infty}^{\infty}(|x[i]|)^{2}\right)^{\frac{1}{2}}, x[n] \in \ell^{2}(\mathbb{Z}) \Rightarrow\left(\|x\|_{2}<\infty\right)\)
    • \(\|x(n)\|_{p}=\left(\sum_{i=-\infty}^{\infty}(|x[i]|)^{P}\right)^{\frac{1}{p}}, x[n] \in \ell^{p}(\mathbb{Z}) \Rightarrow\left(\|x\|_{p}<\infty\right)\)
    • \(\|x(n)\|_{\infty}=\sup _{i}|x[i]|, x[n] \in \ell^{\infty}(\mathbb{Z}) \Rightarrow\left(\|x\|_{\infty}<\infty\right)\)

    For continuous time functions:

    • \(\|f(t)\|_{p}=\left(\int_{-\infty}^{\infty}(|f(t)|)^{p} d t\right)^{\frac{1}{p}}, f(t) \in L^{p}(\mathbb{R}) \Rightarrow\left(\|f(t)\|_{p}<\infty\right)\)
    • \(\|f(t)\|_{p}=\left(\int_{0}^{T}(|f(t)|)^{p} d t\right)^{\frac{1}{p}}, f(t) \in L^{p}([0, T]) \Rightarrow\left(\|f(t)\|_{p}<\infty\right)\)

    This page titled 15.3: Norms is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?