Skip to main content
Engineering LibreTexts

17.3: External Stability

  • Page ID
    24286
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The inputs in Figure 17.5 are related to the signals \(y_{1}\), and \(y_{2}\) as follows:

    \[\begin{array}{l}
    y_{1}=H_{1}\left(y_{2}+r_{1}\right) \\
    y_{2}=H_{2}\left(y_{1}+r_{2}\right)
    \end{array}\nonumber\]

    which can be written as

    \[\left[\begin{array}{cc}
    I & -H_{1} \\
    -H_{2} & I
    \end{array}\right]\left[\begin{array}{l}
    y_{1} \\
    y_{2}
    \end{array}\right]=\left[\begin{array}{cc}
    H_{1} & 0 \\
    0 & H_{2}
    \end{array}\right]\left[\begin{array}{l}
    r_{1} \\
    r_{2}
    \end{array}\right] \ \tag{17.7}\]

    We assume that the interconnection in Figure 17.5 is well-posed. Let the map \(\mathcal{T}\left(H_{1}, H_{2}\right)\) be defined as follows:

    \[\left(\begin{array}{l}
    y_{1} \\
    y_{2}
    \end{array}\right)=\mathcal{T}\left(H_{1}, H_{2}\right)\left(\begin{array}{c}
    r_{1} \\
    r_{2}
    \end{array}\right)\nonumber\]

    From the relations 17.7 the form of the map \(\mathcal{T}\left(H_{1}, H_{2}\right)\) is given by

    \[\mathcal{T}\left(H_{1}, H_{2}\right)=\left[\begin{array}{cc}
    \left(I-H_{1} H_{2}\right)^{-1} H_{1} & \left(I-H_{1} H_{2}\right)^{-1} H_{1} H_{2} \\
    \left(I-H_{2} H_{1}\right)^{-1} H_{2} H_{1} & \left(I-H_{2} H_{1}\right)^{-1} H_{2}
    \end{array}\right]\nonumber\]

    We term the interconnected system externally \(p\)-stable if the map \(\mathcal{T}\left(H_{1}, H_{2}\right)\) is \(p\)- stable. In our finite-order LTI case, what this requires is precisely that the poles of all the entries of the rational matrix

    \[\mathcal{T}\left(H_{1}, H_{2}\right)=\left[\begin{array}{cc}
    \left(I-H_{1} H_{2}\right)^{-1} H_{1} & \left(I-H_{1} H_{2}\right)^{-1} H_{1} H_{2} \\
    \left(I-H_{2} H_{1}\right)^{-1} H_{2} H_{1} & \left(I-H_{2} H_{1}\right)^{-1} H_{2}
    \end{array}\right]\nonumber\]

    be in the open left half of the complex plane.

    External stability guarantees that bounded inputs \(r_{1}\), and \(r_{2}\) will produce bounded responses \(y_{1}\), \(y_{2}\), \(u_{1}\), and \(u_{2}\). External stability is guaranteed by asymptotic stability (or internal stability) of the state-space description obtained through the process described in our discussion of well-posedness. However, as noted in earlier chapters, it is possible to have external stability of the interconnection without asymptotic stability of the state-space description (because of hidden unstable modes in the system - an issue that will be discussed much more in later chapters). On the other hand, external stability is stronger than input/output stability of the mapping \(\left(I-H_{1} H_{2}\right)^{-1} H_{1}\) between \(r_{1}\) and \(y_{1}\), because this mapping only involves a subset of the exposed or external variables of the interconnection.

    Example 17.3

    Assume we have the configuration in Figure 17.5, with \(H_{1}=\frac{s-1}{s+1}\) and \(H_{2}=-\frac{1}{s-1}\). The transfer function relating \(r_{1}\) to \(y_{1}\) is

    \[\begin{aligned}
    \frac{H_{1}}{1-H_{1} H_{2}} &=\frac{s-1}{s+1}\left(1+\frac{1}{s+1}\right)^{-1} \\
    &=\left(\frac{s-1}{s+1}\right)\left(\frac{s+1}{s+2}\right) \\
    &=\frac{s-1}{s+2}
    \end{aligned}\nonumber\]

    Since the only pole of this transfer function is at \(s = -2\), the input/output relation between \(r_{1}\) and \(y_{1}\) is stable. However, consider the transfer function from \(r_{2}\) to \(u_{1}\), which is

    \[\begin{aligned}
    \frac{H_{2}}{1-H_{1} H_{2}} &=\frac{1}{s-1}\left(\frac{1}{1+\frac{1}{s+1}}\right) \\
    &=\frac{s+1}{(s-1)(s+2)}
    \end{aligned}\nonumber\]

    This transfer function is unstable, which implies that the closed-loop system is externally unstable.


    This page titled 17.3: External Stability is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mohammed Dahleh, Munther A. Dahleh, and George Verghese (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.