Skip to main content
Engineering LibreTexts

10.1: Introduction

  • Page ID
    55671
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Recall that statistical estimation is a process through which we deduce parameters of the density that characterize the behavior of a random experiment based on a sample - a typically large but in any event finite number of observable outcomes of the random experiment. Specifically, a sample is a set of \(n\) independent and identically distributed (i.i.d.) random variables; we recall that a set of random variables \[X_{1}, X_{2}, \ldots, X_{n}\] is i.i.d. if \[f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=f_{X}\left(x_{1}\right) \cdots f_{X}\left(x_{n}\right),\] where \(f_{X}\) is the common probability density for \(X_{1}, \ldots, X_{n}\). We also define a statistic as a function of a sample which returns a random number that represents some attribute of the sample; a statistic can also refer to the actual variable so calculated. Often a statistic serves to estimate a parameter. In this chapter, we focus on statistical estimation of parameters associated with arguably the simplest distribution: Bernoulli random variables.


    This page titled 10.1: Introduction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Masayuki Yano, James Douglass Penn, George Konidaris, & Anthony T Patera (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.