Skip to main content
Engineering LibreTexts

3.6: The Gaussian PDF

  • Page ID
    47237
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The normal or Gaussian pdf is one of the most popular distributions for describing random variables, partly because many physical systems do exhibit Gaussian variability, and partly because the Gaussian pdf is amenable to some very powerful tools in design and analysis. It is

    \[ \underline{p}(x) = \dfrac{1}{\sigma \sqrt{2 \pi}} e^{(x - \bar{x})^2 \ 2 \sigma^2}, \]

    where \( \sigma\) and \( \sigma^2\) are the standard deviation and variance, respectively, and \( \bar{x}\) is the mean value. By design, this pdf always has an area that equals one. The cumulative probability function is

    \[P(x) = \dfrac{1}{2} + \textrm{erf} \left( \dfrac{x - \bar{x}}{\sigma} \right)\]

    where

    \[\textrm{erf} (\xi) = \dfrac{1}{\sqrt {2 \pi}} \int\limits_{0}^{\xi} e ^{-\xi^2 /2} \, d\xi. \]

    Don’t try to compute the error function erf(); look it up in a table or call a subroutine! The Gaussian distribution has a shorthand: \( N(\bar{x} , \sigma^2) \). The arguments are the mean and variance.


    This page titled 3.6: The Gaussian PDF is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.