Skip to main content
Engineering LibreTexts

3.7: The Cumulative Probability Function

  • Page ID
    47979
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The cumulative probability function is closely related to the pdf \( \underline{p}(x) \):

    \begin{align} P(x_o) &= p(x \leq x_o) = \int\limits_{- \infty}^{x_o} \underline{p}(x) \, dx \\[4pt] \underline{p}(x_o) &= \dfrac{dP(x_o)}{dx}. \end{align}

    The probability density function is the derivative of the cumulative probability function. \(P\) is important because it lets us now transform the complete pdf of a random variable into the pdf of a function of the random variable. Let us say \(y = f(x)\); the key idea is that for a monotonic function \(f(x)\) (monotonic means the function is either strictly increasing or strictly decreasing with \(x\)),

    \[ p (x \leq x_o) = p(y \leq y_o = f(x_o)); \]

    these probabilities are the same, although we will see some subtleties to do with multiple values if the function is not monotonic. Here is a first example: let \(y = ax + b\). In the case that \(a > 0\), then

    \begin{align*} ax + b \leq y_o \,\, \textrm{when} \,\, x \leq \dfrac{y_o - b}{a} \longrightarrow \\[4pt] p(y \leq y_o) = \int\limits_{- \infty}^{\frac{y_o - b}{a}} \underline{p}(x) \, dx. \end{align*}

    The case when \(a < 0\) has simply

    \[ p(y \leq y_o) = 1 - \int\limits_{-\infty}^{\frac{y_o - b}{a}} \underline{p}(x) \, dx. \nonumber \]

    All that we have done here is modify the upper limit of integration, to take the function into account. Now suppose that \(y < y_o\) or \(y > y_o\) over several disjoint regions of \(x\). This will be the case if \(f(x)\) is not monotonic. An example is \(y = x^2\), which for a given value of \(y_o\) clearly has two corresponding \(x_o\)’s. We have

    \begin{align*} p(y \geq y_o) \, &= \, p(x \leq - \sqrt{y_o}) + p(x \geq - \sqrt{y_o}), && \text{or equivalently} \\[4pt] p(y \leq y_o) \, &= \, 1 - p(x \leq - \sqrt{y_o}) - p(x \geq \sqrt{y_o}) \end{align*}

    and there is of course no solution if \(y_o < 0\). The use of pdf’s for making these calculations, first in the case of monotonic \(f(x)\), goes like this:

    \begin{align} \underline{p}(y) |dy| \, &= \, \underline{p}(x) |dx|, \\[4pt] \underline{p}(y) \, &= \, \underline{p}(x) / \left| \dfrac{dy}{dx} \right| . \end{align}

    In the case of non-monotonic \(f(x)\), a given value of \(y\) corresponds with \(x_1, \, ... \, , \, x_n\). The correct extension of the above is

    \[ \underline{p}(y) = \underline{p}(x_1) / \left| \dfrac{dy(x_1)}{dx} \right| + \, ... \, + \, \underline{p}(x_n) / \left| \dfrac{dy(x_n)}{dx} \right| . \]

    Here is a more detailed example. Consider the Gaussian or normal distribution \(N(0, \sigma^2)\):

    \[ \underline{p}(x) = \dfrac{1}{\sigma \sqrt{2 \pi}} e^{-x^2 / 2 \sigma^2} , \]

    and let \(y = ax^2\). For a given (positive) \(y\), there are two solutions for \(x\):

    \[ x_1 = - \sqrt{ \dfrac{y}{a} } , \, x_2 = \sqrt{ \dfrac{y}{a} }. \]

    Graphs of the function y=a x^2, and of the pdfs of the x and of the y values of this function.
    Figure \(\PageIndex{1}\): Graph of the function \(y=ax^2\) from the example problem above (center). Graphs of the probability density functions of the \(x\) values and of the \(y\) values of \(y=ax^2\) (left and right, respectively).

    Now \(dy/dx = 2ax\) so that

    \begin{align*} \left| \dfrac{dy(x_1)}{dx} \right| &= \left| \dfrac{dy(x_2)}{dx} \right| = 2a|x| = 2a \sqrt{\dfrac{y}{a}} = 2 \sqrt{ay} \longrightarrow \\[4pt] \underline{p}(y) &= \underline{p}(x_1) / \left| \dfrac{dy(x_1)}{dx_1} \right| + \underline{p}(x_2) / \left| \dfrac{dy(x_2)}{dx_2} \right| \\[4pt] &= \dfrac{1}{\sigma \sqrt{2 \pi}} \left\{ \dfrac{1}{2 \sqrt{ay}} e^{-y/2a \sigma^2} + \textrm{same} \right\}, && \text{giving finally} \\[4pt] &= \dfrac{1}{\sigma \sqrt{2 \pi ay}} e^{-y/2 \sigma^2 a}. \end{align*}


    This page titled 3.7: The Cumulative Probability Function is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform.