Skip to main content
Engineering LibreTexts

3.8: Central Limit Theorem

  • Page ID
    47980
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A rather amazing property of random variables is captured in the central limit theorem; that a sum of random variables taken from distributions - even many different distributions - approaches a single Gaussian distribution as the number of samples gets large. To make this clear, let \(x_1\) come from a distribution with mean \(\bar{x}_1\) and variance \(\sigma_1 ^2\), and so on up to \(x_n\), where \(n\) is the number of samples. Let \(y = \displaystyle \sum_{i=1}^n x_i \). As \(n \rightarrow \infty\),

    \begin{align} \underline{p}(y) &= N(\bar{y}, \sigma_y ^2), \, \, \textrm{with} \\[4pt] \bar{y} &= \sum_{i=1}^n \bar{x}_i \\[4pt] \sigma_y ^2 &= \sum_{i=1}^n \sigma_i ^2 . \end{align}

    This is easy to verify numerically, and is at the heart of Monte Carlo simulation techniques. As a practical matter in using the theorem, it is important to remember that as the number of trials goes to infinity so will the variance, even if the mean does not (for example, if the underlying means are all zero). Taking more samples does not mean that the variance of the sum decreases, or even approaches any particular value.


    This page titled 3.8: Central Limit Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.