Skip to main content
Engineering LibreTexts

6.3: Velocity Potential

  • Page ID
    47254
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We introduce the vector field \(\phi (\vec{x}, \, t)\) to satisfy the following relation:

    \[ \vec{V} \, = \begin{Bmatrix} u \\[4pt] v \\[4pt] w \end{Bmatrix} = \left[ \dfrac{\partial \phi}{\partial x} \quad \dfrac{\partial \phi}{\partial y} \quad \dfrac{\partial \phi}{\partial z} \right] ^T = \, \nabla \phi. \]

    The conservation of mass is transformed to

    \[ \dfrac{\partial^2 \phi}{\partial x^2} + \dfrac{\partial^2 \phi}{\partial y^2} + \dfrac{\partial^2 \phi}{\partial z^2} \, = \, \nabla^2 \cdot \phi \, = \, 0. \]

    Considering Newton’s law, the first force balance (\(x\)-direction) equation that we gave above is

    \[ \rho \left[ \dfrac{\partial u}{\partial t} + u \dfrac{\partial u}{\partial x} + v \dfrac{\partial u}{\partial y} + w \dfrac{\partial u}{\partial z} \right] \, = \, -\dfrac{\partial p}{\partial x}; \]

    this becomes, substituting the velocity potential \(\phi\),

    \[ \rho \left[ \dfrac{\partial^2 \phi}{\partial t \partial x} + \dfrac{\partial \phi}{\partial x} \dfrac{\partial^2 \phi}{\partial x^2} + \dfrac{\partial \phi}{\partial y} \dfrac{\partial ^2 \phi}{\partial y \partial x} + \dfrac{\partial \phi}{\partial z} \dfrac{\partial^2 \phi}{\partial z \partial x} \right] \, = \, -\dfrac{\partial \rho}{\partial x}. \]

    Integrating on \(x\) we find

    \[ p + \rho \dfrac{\partial \phi}{\partial t} + \dfrac{1}{2} \rho (u^2 + v^2 + w^2) \, = \, C, \]

    where \(C\) is a constant. The other two force balance equations are precisely the same but with the addition of gravity effects in the \(z\)-direction. Hence a single equation for the whole field is

    \[ p + \rho \dfrac{\partial \phi}{\partial t} + \dfrac{1}{2} \rho (u^2 + v^2 + w^2) + \rho g z \, = \, C. \]

    This is the Bernoulli equation.


    This page titled 6.3: Velocity Potential is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.