Skip to main content
Engineering LibreTexts

8: Inference

  • Page ID
    50201
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In Chapter 7 the process model was introduced as a way of accounting for flow of information through processes that are discrete, finite, and memoryless, and which may be nondeterministic and lossy. Although the model was motivated by the way many communication systems work, it is more general.

    Formulas were given for input information \(I\), loss \(L\), mutual information \(M\), noise \(N\), and output information \(J\). Each of these is measured in bits, although in a setting in which many symbols are chosen, one after another, they may be multiplied by the rate of symbol selection and then expressed in bits per second. The information flow is shown in Figure 8.1. All these quantities depend on the input probability distribution \(p(A_i)\).

    If the input probabilities are already known, and a particular output outcome is observed, it is possible to make inferences about the input event that led to that outcome. Sometimes the input event can be identified with certainty, but more often the inferences are in the form of changes in the initial input probabilities. This is typically how communication systems work—the output is observed and the “most likely” input event is inferred. Inference in this context is sometime referred to as estimation. It is the topic of Section 8.1.

    On the other hand, if the input probabilities are not known, this approach does not work. We need a way to get the initial probability distribution. An approach that is based on the information analysis is discussed in Section 8.2 and in subsequent chapters of these notes. This is the Principle of Maximum Entropy.


    This page titled 8: Inference is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paul Penfield, Jr. (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.