# 12: Multiple Input, Multiple Output (MIMO) Control

- Page ID
- 22516

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

- 12.1: Determining if a system can be decoupled
- A system of inputs and outputs can be described as one of four types: SISO (single input, single output), SIMO (single input, multiple output), MISO (multiple input, single output), or MIMO (multiple input, multiple output). Multiple input, multiple output (MIMO) systems describe processes with more than one input and more than one output which require multiple control loops. These systems can be complicated through loop interactions that result in variables with unexpected effects.

- 12.2: MIMO control using RGA
- Single variable Input or Single variable Output (SISO) control schemes are just one type of control scheme that engineers in industry use to control their process. They may also use MIMO, which is a Multi-Input-Multi-Output control scheme. In MIMO, one or more manipulated variables can affect the interactions of controlled variables in a specific loop or all other control loops.

- 12.3: MIMO using Model Predictive Control
- This article will describe how to control a system with multiple inputs and outputs using model predictive control (MPC). MPC is a linear algebra method for predicting the result of a sequence of control variable manipulations. Once the results of specific manipulations are predicted, the controller can then proceed with the sequence that produces the desired result. One can compare this controller method to "look ahead" in chess or other board games.

- 12.4: Neural Networks for automatic model construction
- Neural networks, which were initially designed to imitate human neurons, work to store, analyze, and identify patterns in input readings to generate output signals. In chemical engineering, neural networks are used to predict the ouputs of systems such as distillation columns and CSTRs. This article will discuss how neural networks work, the advantages and disadvantages of neural networks, and some common applications of the networks.

- 12.5: Understanding MIMO Control Through Two Tanks Interaction
- However, in the real chemical processes, there are always interations between the reactors. The following page will discuss the two tanks model by taking into consideration the interaction between the two tanks. To manipulate this model, we need to use Multiple Input Multiple Output (MIMO) control, which will add more complexity in understanding the overall process.