Skip to main content
Engineering LibreTexts

19.7: Summary

  • Page ID
    31760
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The basic features of diffraction and imaging have been presented in this package. When a wave, such as light, passes through a small aperture, it will be distorted. It will form a distinctive pattern on a screen, known as the diffraction pattern. This pattern contains information on the diffracting aperture (such as a mask or grating), with an inverse relationship in dimensions. The form of the intensity pattern can be predicted mathematically.

    A lens can be used to form an image of the mask onto the screen. The diffraction pattern of the mask can be seen in the back focal plane of the lens. By forming the image from selected portions of the diffraction pattern in the back focal plane, particular information present in the image can be enhanced.

    The theories involved can be applied to electrons and X-rays, as well as optics.

    Going further

    Books

    • C. Hammond, The Basics of Crystallography and Diffraction, Oxford University Press 1997.
    • R. Steadman, Crystallography, Van Nostrand Reinhold, student edition, 1982.
    • J.S. Blakemore, Solid State Physics, Cambridge University Press, 1985.

    Websites


    This page titled 19.7: Summary is shared under a CC BY-NC-SA 2.0 license and was authored, remixed, and/or curated by Dissemination of IT for the Promotion of Materials Science (DoITPoMS) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?