Skip to main content
Engineering LibreTexts

25.4: Existence and Uniqueness - General Case (Square Systems)

  • Page ID
    55701
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We now consider a general system of \(n\) equations in \(n\) unknowns, \[\underbrace{A}_{\text {given }} \underbrace{u}_{\text {to find }}=\underbrace{f}_{\text {given }}\] where \(A\) is \(n \times n, u\) is \(n \times 1\), and \(f\) is \(n \times 1\).

    If \(A\) has \(n\) independent columns then \(A\) is non-singular, \(A^{-1}\) exists, and \(A u=f\) has a unique solution \(u\). There are in fact many ways to confirm that \(A\) is non-singular: \(A\) has \(n\) independent columns; \(A\) has \(n\) independent rows; \(A\) has nonzero determinant; \(A\) has no zero eigenvalues; \(A\) is SPD. (We will later encounter another condition related to Gaussian elimination.) Note all these conditions are necessary and sufficient except the last: \(A\) is \(\mathrm{SPD}\) is only a sufficient condition for non-singular \(A\). Conversely, if any of the necessary conditions is not true then \(A\) is singular and \(A u=f\) either will have many solutions or no solution, depending of \(f .-\) In short, all of our conclusions for \(n=2\) directly extend to the case of general \(n\).

    \({ }^{6}\) Note in the computational context we must also understand and accommodate "nearly" singular systems. We do not discuss this more advanced topic further here.


    This page titled 25.4: Existence and Uniqueness - General Case (Square Systems) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Masayuki Yano, James Douglass Penn, George Konidaris, & Anthony T Patera (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.