25.3: A "Larger" Spring-Mass System- n Degrees of Freedom
- Page ID
- 55700
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We now consider the equilibrium of the system of \(n\) springs and masses shown in Figure \(25.13\). (This string of springs and masses in fact is a model (or discretization) of a continuum truss; each spring-mass is a small segment of the truss.) Note for \(n=2\) we recover the small system studied in the preceding sections. This larger system will serve as a more "serious" model problem both as regards existence and uniqueness but even more importantly as regard computational procedures. We then consider force balance on mass 1 , \[\begin{aligned} &\sum \text { forces on mass } 1=0 \\ &\Rightarrow f_{1}-k_{1} u_{1}+k_{2}\left(u_{2}-u_{1}\right)=0, \end{aligned}\] and then on mass 2, \[\begin{aligned} &\sum \text { forces on mass } 2=0 \\ &\Rightarrow f_{2}-k_{2}\left(u_{2}-u_{1}\right)+k_{3}\left(u_{3}-u_{2}\right)=0, \end{aligned}\] and then on a typical interior mass \(i\) (hence \(2 \leq i \leq n-1\) ) \[\begin{aligned} &\sum \text { forces on mass } i=0(i \neq 1, i \neq n) \\ &\Rightarrow f_{i}-k_{i}\left(u_{i}-u_{i-1}\right)+k_{i+1}\left(u_{i+1}-u_{i}\right)=0, \end{aligned}\] and finally on mass \(n\), \[\begin{aligned} &\sum \text { forces on mass } n=0 \\ &\Rightarrow f_{n}-k_{n}\left(u_{n}-u_{n-1}\right)=0 \end{aligned}\]

We can write these equations as
\[\begin{aligned} & \begin{array}{llll}\left(k_{1}+k_{2}\right) u_{1} & -k_{2} u_{2} & 0 \ldots & =f_{1}\end{array} \\ & -k_{2} u_{1}+\left(k_{2}+k_{3}\right) u_{2} \quad-k_{3} u_{3} \quad 0 \ldots \quad=f_{2} \\ & \begin{array}{llll}0 & -k_{3} u_{2} & +\left(k_{3}+k_{4}\right) u_{3} & -k_{4} u_{4}\end{array}=f_{3} \\ & \ldots 0 \quad-k_{n} u_{n-1} \quad+k_{n} u_{n}=f_{n} \\ & \left(\begin{array}{ccccccc}k_{1}+k_{2} & -k_{2} & & & & & \\-k_{2} & k_{2}+k_{3} & -k_{3} & & & 0 & \\& -k_{3} & k_{3}+k_{4} & -k_{4} & & & \\& & & & & & \\& & \ddots & \ddots & \ddots & & \\0 & & & & & \\u_{n-1} \\u_{n}\end{array}\right) \quad\left(\begin{array}{c}u_{1} \\u_{2} \\u_{3} \\\vdots \\f_{n-1}\end{array}\right)\left(\begin{array}{c}f_{1} \\f_{2} \\f_{3} \\\vdots \\f \\f_{n-1}\end{array}\right) \\ & \begin{array}{ccc}K & u & f \\n \times n & n \times 1 & n \times 1\end{array} \end{aligned}\]
which is simply \(A u=f(A \equiv K)\) but now for \(n\) equations in \(n\) unknowns.
In fact, the matrix \(K\) has a number of special properties. In particular, \(K\) is sparse \(-K\) is mostly zero entries since only "nearest neighbor" connections affect the spring displacement and hence the force in the spring \({ }^{5}\); tri-diagonal - the nonzero entries are all on the main diagonal and diagonal just below and just above the main diagonal; symmetric \(-K^{\mathrm{T}}=K\); and positive definite (as proven earlier for the case \(n=2)-\frac{1}{2}\left(v^{\mathrm{T}} K v\right)\) is the potential/elastic energy of the system. Some of these properties are important to establish existence and uniqueness, as discussed in the next section; some of the properties are important in the efficient computational solution of \(K u=f\), as discussed in the next chapters of this unit.
\({ }^{5}\) This sparsity property, ubiquitous in MechE systems, will be the topic of its own chapter subsequently. \[\begin{aligned} & \begin{array}