Skip to main content
Engineering LibreTexts

5.15: References

  • Page ID
    41119
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    [1] H. Wheeler, “Simple inductance formulas for radio coils,” Proc. of the Institute of Radio Engineers, vol. 16, no. 10, pp. 1398–1400, Oct. 1928.

    [2] ——, “Inductance formulas for circular and square coils,” Proc. IEEE, vol. 70, no. 12, pp. 1449–1450, Dec. 1982.

    [3] ——, “Inductance chart for solenoid coil,” Proc. IRE, vol. 38, no. 12, pp. 1398–1400, Dec. 1950.

    [4] T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, 2004.

    [5] C. Yue and S. Wong, “On-chip spiral inductors with patterned ground shields for sibased RF ICs,” IEEE J. of Solid-State Circuits, vol. 33, no. 5, pp. 743–752, May 1998.

    [6] W. Liu, J. Suryanarayanan, J. Nath, S. Mohammadi, L. Katehi, and M. Steer, “Toroidal inductors for radio-frequency integrated circuits,” IEEE Trans. on Microwave Theory and Techniques, vol. 52, no. 2, pp. 646–654, Feb. 2004.

    [7] A. Victor and M. Steer, “Reflection coefficient shaping of a 5-GHz voltage-tuned oscillator for improved tuning,” IEEE Trans. on Microwave Theory and Techniques, vol. 55, no. 12, pp. 2488–2494, Dec. 2007.

    [8] http://www.coilcraft.com.

    [9] IEEE Standard 315-1975, Graphic Symbols for Electrical and Electronics Diagrams (Including Reference Designation Letters), Adopted Sept. 1975, Reaffirmed Dec. 1993. Approved by American National Standards Institute, Jan. 1989. Approved adopted for mandatory use, Department of Defense, United States of America, Oct. 1975. Approved by Canadian Standards Institute, Oct. 1975.

    [10] P. Vizmuller, RF Design Guide: Systems, Circuits, and Equations. Artech House, 1995.

    [11] http://www.minicircuits.com.

    [12] P. Katehi and N. Alexopoulos, “Frequencydependent characteristics of microstrip discontinuities in millimeter-wave integrated circuits,” IEEE Trans. on Microwave Theory and Techniques, vol. 33, no. 10, pp. 1029–1035, Oct. 1985.

    [13] T. Edwards and M. Steer, Foundations for Microstrip Circuit Design. John Wiley & Sons, 2016.

    [14] J. Malherbe, “Realization of elliptic function bandstop filters by means of a resonated prototype,” IEEE Trans. on Microwave Theory and Techniques, vol. 25, no. 8, p. 717, Aug. 1977.

    [15] M. Steer, Microwave and RF Design, Transmission Lines, 3rd ed. North Carolina State University, 2019.

    [16] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-line Circuits. Artech House, 1999.

    [17] W. Fathelbab and M. Steer, “Broadband network design,” in Multifunctional Adaptive Microwave Circuits and Systems, M. Steer and W. Palmer, Eds., 2008, ch. 8.

    [18] D. Kuylenstierna and P. Linner, “Design of broad-band lumped-element baluns with inherent impedance transformation,” IEEE Trans. on Microwave Theory and Techniques, vol. 52, no. 12, pp. 2739–2745, Dec. 2004.

    [19] B. Minnis and M. Healy, “New broadband balun structures for monolithic microwave integrated circuits,” in 1991 IEEE MTT-S Int. Microwave Symp. Dig., Jul. 1991, pp. 425–428.

    [20] I. Robertson and S. Lucyszyn, RFIC and MMIC Design and Technology. IEE, 2001, iEE Circuits, Devices and Systems Series.

    [21] C. Goldsmith, A. Kikel, and N. Wilkens, “Synthesis of marchand baluns using multilayer microstrip structures,” Int. J. of Microwave & Millimeter-Wave Computer-Aided Eng, pp. 179–188, 1992.

    [22] N. Marchand, “Transmission line conversion transformers,” Electronics, pp. 142–145, 1944.

    [23] W. Fathelbab and M. Steer, “New classes of miniaturized planar marchand baluns,” IEEE Trans. on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1211–1220, Apr. 2005.

    [24] J. J. Cloete, “Graphs of circuit elements for the marchand balun,” Microwave Journal, vol. 24, no. 5, pp. 125–128, May 1981.

    [25] E. Wilkinson, “An n-way hybrid power divider,” IRE Trans. on Microwave Theory and Techniques, vol. 8, no. 1, pp. 116–118, Jan. 1960.

    [26] Y.-L. Wu, H. Zhou, Y.-X. Zhang, and Y.-A. Liu, “An unequal wilkinson power divider for a frequency and its first harmonic,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 11, pp. 737–739, Nov. 2008.

    [27] S. Oh, J.-J. Koo, M.-S. Hwang, C. Park, Y.-C. Jeong, J.-S. Lim, K.-S. Choi, and D. Ahn, “An unequal wilkinson power divider with variable dividing ratio,” in 2007 IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2007, pp. 411–414.

    [28] J.-S. Lim, S.-W. Lee, C.-S. Kim, J.-S. Park, D. Ahn, and S. Nam, “A 4.1 unequal wilkinson power divider,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 3, pp. 124–126, Mar. 2001.

    [29] H. Chireix, “High power outphasing modulation,” Proc. of the Institute of Radio Engineers, vol. 23, no. 11, pp. 1370–1392, Nov. 1935.

    [30] I. Hakala, D. Choi, L. Gharavi, N. Kajakine, J. Koskela, and R. Kaunisto, “A 2.14-GHz chireix outphasing transmitter,” IEEE Trans. on Microwave Theory and Techniques, vol. 53, no. 6, pp. 2129–2138, Jun. 2005.

    [31] F. Raab, “Efficiency of outphasing RF power-amplifier systems,” IEEE Trans. on Communications, vol. 33, no. 10, pp. 1094–1099, Oct. 1985.

    [32] S. Moloudi, K. Takinami, M. Youssef, M. Mikhemar, and A. Abidi, “An outphasing power amplifier for a software-defined radio transmitter,” in IEEE Int. Solid-State Circuits Conf., 2008 (ISSCC 2008) Dig. of Technical Papers, Feb. 2008, pp. 568–636.

    [33] W. Gerhard and R. Knoechel, “Novel transmission line combiner for highly efficient outphasing RF power amplifiers,” in 37th European Microwave Conf., Oct. 2007, pp. 1433– 1436.

    [34] http://www.synergymwave.com.

    [35] C. Ruthroff, “Some broad-band transformers,” Proc. of the IRE, vol. 47, no. 8, pp. 1337– 1342, Aug. 1959.


    5.15: References is shared under a CC BY-NC license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?